Динамика относительного движения. Теорема об изменении количества движения механической системы Теорема об изменении количества движения материальной системы

Так как масса точки постоянна, а ее ускорение то уравнение (2), выражающее основной закон динамики, можно представить в виде

Уравнение (32) выражает одновременно теорему об изменении количества движения точки в дифференциальной форме: производная по времени от количества движения точки равна сумме действующих на точку сил

Пусть движущаяся точка имеет в момент времени скорость а в момент - скорость Умножим тогда обе части равенства (32) на и возьмем от них определенные интегралы. При этом справа, где интегрирование идет по времени, пределами интеграла будут а слева, где интегрируется скорость, пределами интеграла будут соответствующие значения скорости

Так как интеграл от равен то в результате получим

Стоящие справа интегралы, как следует из формулы (30), представляют собой импульсы действующих сил. Поэтому окончательно будет

Уравнение (33) выражает теорему об изменении количества движения точки в конечном виде: изменение количества движения точки за некоторый промежуток времени равно сумме импульсов всех действующих на точку сил за тот же промежуток времени.

При решении задач вместо векторного уравнения (33) часто пользуются уравнениями в проекциях. Проектируя обе части равенства (33) на координатные оси, получим

В случае прямолинейного движения, происходящего вдоль оси теорема выражается первым из этих уравнений.

Решение задач. Уравнения (33) или (34) позволяют, зная как при движении точки изменяется ее скорость, определить импульс действующих сил (первая задача динамики) или, зная импульсы действующих сил, определить, как изменяется при движении скорость точки (вторая задача динамики). При решении второй задачи, когда заданы силы, надо вычислить их импульсы, Как видно из равенств (30) или (31), это можно сделать лишь тогда, когда силы постоянны или зависят только от времени.

Таким образом, уравнения (33), (34) можно непосредственно использовать для решения второй задачи динамики, когда в задаче в число данных и искомых величин входят: действующие силы, время движения точки и ее начальная и конечная скорости (т. е. величины ), причем силы должны быть постоянными или зависящими только от времени.

Задача 95. Точка, масса которой кг, движется по окружности с численно постоянной скоростью Определить импульс действующей на точку силы за время, в течение которого точка проходит четверть окружности

Решение. По теореме об изменении количества движения Строя геометрически разность этих количеств движения (рис. 222), находим из полученного прямоугольного треугольника

Но по условиям задачи следовательно,

Для аналитического подсчета можно, используя первые два из уравнений (34), найти

Задача 96. Грузу, имеющему массу и лежащему на горизонтальной плоскости, сообщают (толчком) начальную скорость Последующее движение груза тормозится постоянной силой F. Определить, через сколько времени груз остановится,

Решение. По данным задачи видно, что для определения времени движения можно воспользоваться доказанной теоремой. Изображаем груз в произвольном положении (рис. 223). На него действуют сила тяжести Р, реакция плоскости N и тормозящая сила F. Направляя ось в сторону движения, составляем первое из уравнений (34)

В данном случае - скорость в момент остановки), а . Из сил проекцию на ось дает только сила F. Так как она постоянна, то где - время торможения. Подставляя все эти данные в уравнение (а), получаем откуда искомое время

Аналогично тому, как для одной материальной точки, выведем теорему об изменении количества движения для системы в различных формах.

Преобразуем уравнение (теорема о движении цента масс механической системы)

следующим образом:

;

Полученное уравнение выражает теорему об изменении количества движения механической системы в дифференциальной форме: производная от количества движения механической системы по времени равна главному вектору внешних сил, действующих на систему .

В проекциях на декартовы оси координат:

; ; .

Беря интегралы от обеих частей последних уравнений по времени, получим теорему об изменении количества движения механической системы в интегральной форме: изменение количества движения механической системы равно импульсу главного вектора внешних сил, действующих на систему .

.

Или в проекциях на декартовы оси координат:

; ; .

Следствия из теоремы (законы сохранения количества движения)

Закон сохранения количества движения получаются как частные случаи теоремы об изменении количества движения для системы в зависимости от особенностей системы внешних сил. Внутренние силы могут быть любыми, так как они не влияют на изменения количества движения.

Возможны два случая:

1. Если векторная сумма всех внешних сил, приложенных к системе, равна нулю , то количество движения системы постоянно по величине и направлению

2. Если равна нулю проекция главного вектора внешних сил на какую либо координатную ось и/или и/или , то проекция количества движения на эти же оси является величиной постоянной, т.е. и/или и/или соответственно.

Аналогичные записи можно сделать и для материальной точки и для материальной точки.

Условие задачи . Из орудия, масса которого М , вылетает в горизонтальном направлении снаряд массы m со скоростью v . Найти скорость V орудия после выстрела.

Решение . Все внешние силы, действующие на механическую систему орудие-снаряд, вертикальны. Значит, на основании следствия из теоремы об изменении количества движения системы, имеем: .

Количество движения механической системы до выстрела:

Количество движения механической системы после выстрела:

.

Приравнивая правые части выражений, получим, что

.

Знак «-» в полученной формуле указывает на то, что после выстрела орудие откатится в направлении, противоположном оси Ox .

ПРИМЕР 2. Струя жидкости плотностью вытекает со скоростью V из трубы с площадью поперечного сечения F и ударяется под углом о вертикальную стенку. Определить давление жидкости на стену.

РЕШЕНИЕ. Применим теорему об изменении количества движения в интегральной форме к объему жидкости массой m ударяющемуся о стену за некоторый промежуток времени t .

УРАВНЕНИЕ МЕЩЕРСКОГО

(основное уравнение динамики тела переменной массы)

В современной технике возникают случаи, когда масса точки и системы не остается постоянной в процессе движения, а изменяется. Так, например, при полете космических ракет, вследствие выбрасывания продуктов сгорания и отдельных ненужных частей ракет, изменение массы достигает 90-95% общей начальной величины. Но не только космическая техника может быть примером динамики движения переменной массы. В текстильной промышленности происходит значительное изменения массы различных веретен, шпуль, рулонов при современных скоростях работы станков и машин.

Рассмотрим главные особенности, связанные с изменением массы, на примере поступательного движения тела переменной массы. К телу переменной массы нельзя непосредственно применить основной закон динамики. Поэтому получим дифференциальные уравнения движения точки переменной массы, применяя теорему об изменении количества движения системы.

Пусть точка массой m+dm движется со скоростью . Затем происходит отрыв от точки некоторой частицы массой dm движущейся со скоростью .

Количество движения тела до отрыва частицы:

Количество движения системы, состоящей из тела и оторвавшейся частицы, после ее отрыва:

Тогда изменение количества движения:

Исходя из теоремы об изменении количества движения системы:

Обозначим величину - относительная скорость частицы:

Обозначим

Величину R называют реактивной силой. Реактивная сила является тягой двигателя, обусловленная выбросом газа из сопла.

Окончательно получим

-

Данная формула выражает основное уравнение динамики тела переменной массы (формула Мещерского). Из последней формулы следует, что дифференциальные уравнения движения точки переменной массы имеют такой же вид, как и для точки постоянной массы, кроме приложенных к точке дополнительно реактивной силы, обусловленной изменением массы.

Основное уравнение динамики тела переменной массы свидетельствует о том, что ускорение этого тела формируется не только за счет внешних сил, но и за счет реактивной силы.

Реактивная сила – это сила, родственная той, которую ощущает стреляющий человек - при стрельбе из пистолета она ощущается кистью руки; при стрельбе из винтовки воспринимается плечом.

Первая формула Циолковского (для одноступенчатой ракеты)

Пусть точка переменной массы или ракета движется прямолинейно под действием только одной реактивной силы. Так как для многих современных реактивных двигателей , где - максимально допускаемая конструкцией двигателя реактивная сила (тяга двигателя); - сила тяжести, действующая на двигатель, находящийся на земной поверхности. Т.е. изложенное позволяет составляющей в уравнении Мещерского пренебречь и к дальнейшему анализу принять это уравнение в форме: ,

Обозначим:

Запас топлива (при жидкостных реактивных двигателях - сухая масса ракеты (остающаяся её масса после выгорания всего топлива);

Масса отделившихся от ракеты частиц; рассматривается как переменная величина, изменяющаяся от до .

Запишем уравнение прямолинейного движения точки переменной массы в следующем виде вид

.

Так как формула для определения переменной массы ракеты

Следовательно, уравнения движения точки Беря интегралы от обеих частей получим

где - характеристическая скорость – это скорость, которую приобретает ракета под действием тяги после извержения из ракеты всех частиц (при жидкостных реактивных двигателях – после выгорания всего топлива).

Вынесенная за знак интеграла (что можно делать на основании известной из высшей математики теоремы о среднем) - это средняя скорость извергаемых из ракеты частиц.

Состоящую из n материальных точек. Выделим из этой системы некоторую точку M j с массой m j . На эту точку, как известно, действуют внешние и внутренние силы .

Приложим к точке M j равнодействующую всех внутренних сил F j i и равнодействующую всех внешних сил F j e (рисунок 2.2). Для выделенной материальной точки M j (как для свободной точки) запишем теорему об изменении количества движения в дифференциальной форме (2.3):

Запишем аналогичные уравнения для всех точек механической системы (j=1,2,3,…,n) .

Рисунок 2.2

Сложим почленно все n уравнений:

∑d(m j ×V j)/dt = ∑F j e + ∑F j i , (2.9)

d∑(m j ×V j)/dt = ∑F j e + ∑F j i . (2.10)

Здесь ∑m j ×V j =Q – количество движения механической системы;
∑F j e = R e – главный вектор всех внешних сил, действующих на механическую систему;
∑F j i = R i =0 – главный вектор внутренних сил системы (по свойству внутренних сил он равен нулю).

Окончательно для механической системы получаем

dQ/dt = R e . (2.11)

Выражение (2.11) представляет собой теорему об изменении количества движения механической системы в дифференциальной форме (в векторном выражении): производная по времени от вектора количества движения механической системы равна главному вектору всех внешних сил, действующих на систему .

Проецируя векторное равенство (2.11) на декартовы оси координат, получаем выражения для теоремы об изменении количества движения механической системы в координатном (скалярном) выражении:

dQ x /dt = R x e ;

dQ y /dt = R y e ;

dQ z /dt = R z e , (2.12)

т.е. производная по времени от проекции количества движения механической системы на какую-либо ось равна проекции на эту ось главного вектора всех действующих на эту механическую систему внешних сил .

Умножая обе части равенства (2.12) на dt , получим теорему в другой дифференциальной форме:

dQ = R e ×dt = δS e , (2.13)

т.е. дифференциал количества движения механической системы равен элементарному импульсу главного вектора (сумме элементарных импульсов) всех внешних сил, действующих на систему .

Интегрируя равенство (2.13) в пределах изменения времени от 0 до t , получаем теорему об изменении количества движения механической системы в конечной (интегральной) форме (в векторном выражении):

Q — Q 0 = S e ,

т.е. изменение количества движения механической системы за конечный промежуток времени равно полному импульсу главного вектора (сумме полных импульсов) всех внешних сил, действующих на систему за тот же промежуток времени .

Проецируя векторное равенство (2.14) на декартовы оси координат, получим выражения для теоремы в проекциях (в скалярном выражении):

т.е. изменение проекции количества движения механической системы на какую-либо ось за конечный промежуток времени равно проекции на эту же ось полного импульса главного вектора (сумме полных импульсов) всех действующих на механическую систему внешних сил за тот же промежуток времени .

Из рассмотренной теоремы (2.11) – (2.15) вытекают следствия:

  1. Если R e = ∑F j e = 0 , то Q = const – имеем закон сохранения вектора количества движения механической системы: если главный вектор R e всех внешних сил, действующих на механическую систему, равен нулю, то вектор количества движения этой системы остается постоянным по величине и направлению и равным своему начальному значению Q 0 , т.е. Q = Q 0 .
  2. Если R x e = ∑X j e =0 (R e ≠ 0) , то Q x = const – имеем закон сохранения проекции на ось количества движения механической системы: если проекция главного вектора всех действующих на механическую систему сил на какую-либо ось равна нулю, то проекция на эту же ось вектора количества движения этой системы будет величиной постоянной и равной проекции на эту ось начального вектора количества движения, т.е. Q x = Q 0x .

Дифференциальная форма теоремы об изменении количества движения материальной системы имеет важные и интересные приложения в механике сплошной среды. Из (2.11) можно получить теорему Эйлера.

Количество движения мерой механического движения, если механическое движение перейдет в механическое. Например, механическое движение бильярдного шара (рис. 22) до удара переходит в механическое движение шаров после удара. Для точки количество движения равно произведению .

Мерой действия силы в этом случае является импульс силы

. (9.1)

Импульс определяет действие силы за промежуток времени. Для материальной точки теорему об изменении количества движения можно использовать в дифференциальной форме
(9.2) или интегральной (конечной) форме
. (9.3)

Изменение количества движения материальной точки за какой-то промежуток времени равно импульсу всех сил, приложенных к точке за то же время.

Рисунок 22

При решении задач теорема (9.3) чаще используется в проекциях на координатные оси
;

; (9.4)

.

С помощью теоремы об изменении количества движения точки можно решать задачи, в которых на точку или тело, движущееся поступательно, действуют силы постоянные или переменное, зависящие от времени, а в число заданных и искомых величин входят время движения и скорости в начале и конце движения. Задачи с применением теоремы решаются следующей последовательности:

1. выбирают систему координат;

2. изображают все действующие на точку заданные (активные) силы и реакции;

3. записывают теорему об изменении количества движения точки в проекциях на выбранные оси координат;

4. определяют искомые величины.

ПРИМЕР 12.

Молот весом G=2т падает с высоты h=1м на заготовку за время t=0,01с и производит штамповку детали (рис. 23). Определить среднюю силу давления молота на заготовку.

РЕШЕНИЕ.

1. На заготовку действуют сила тяжести молота и реакция опоры. Величина опорной реакции изменяется со временем, поэтому рассмотрим среднее ее значение
.

2. направим ось координат у по вертикали вниз и применим теорему об изменении количества движения точки в проекции на эту ось:
, (1) где-- скорость молота в конце удара;

-- начальная скорость молота в момент соприкосновения с заготовкой.

3. Для определения скорости составим дифференциальное уравнение движения молота в проекции на ось у:

. (2)

Разделим переменные, проинтегрируем дважды уравнение (2):
;

;

. Постоянные интегрирования С 1 , С 2 найдем из начальных условий. При t=0 V y =0, тогда С 1 =0; у=0, тогда С 2 =0. Следовательно, молот движется по закону
, (3) а скорость движения молота изменяется по закону
. (4) Время движения молота выразим из (3) и подставим в (4)
;
. (5)

4. Проекцию импульса внешних сил на ось у найдем по формуле:
. (6) Подставим (5) и (6) в (1):
, откуда находим реакцию опоры, и, следовательно, искомое давление молота на заготовку
т.

Рисунок 24

К

где М-масса системы, V c -скорость центра масс. Теорему об изменении количества движения механической системы можно записать в дифференциальной и конечной (интегральной) форме:
;

. (9.7)

оличество движения механической системы можно определить как сумму количеств движения точек системы
. (9.5) Количество движения системы или твердого тела можно определить, зная массу системы и скорость центра масс
, (9.6)

Изменение количества движения механической системы за некоторый промежуток времени равно сумме импульсов внешних сил, Действующих за то же время. Иногда удобнее пользоваться теоремой об изменении количества движения в проекции на оси координат
; (9.8)
. (9.9)

Закон сохранения количества движения устанавливает, что при отсутствии внешних сил количество движения механической системы остается постоянным. Действие внутренних сил не может изменить количества движения системы. Из уравнения (9.6) видно, что при
,
.

Если
, то
или
.

Д

гребного винта или пропеллера, реактивного движения. Кальмары движутся рывками, выбрасывая воду из мускульного мешка по принципу водомета (рис. 25). Отталкиваемая вода обладает известным количеством движения, направленным назад. Кальмар получает при этом соответствующую скорость движения вперед за счет реактивной силы тяги, так как перед выпрыгиванием кальмара силауравновешивается силой тяжести.

ействие закона сохранения количества движения механической системы можно проиллюстрировать на примере явления отдачи или отката при стрельбе, работы

Применение теоремы об изменении количества движения позволяет исключить из рассмотрения все внутренние силы.

ПРИМЕР 13.

На железнодорожной платформе, свободно стоящей на рельсах, установлена лебедка А с барабаном радиуса r (рис. 26). Лебедка предназначена для перемещения по платформе груза В массой m 1 . Масса платформы с лебедкой m 2 . Барабан лебедки вращается по закону
. В начальный момент времени система была подвижна. Пренебрегая трением, найти закон изменения скорости платформы после включения лебедки.

РЕШЕНИЕ.

1. Рассмотрим платформу, лебедку и груз как единую механическую систему, на которую действуют внешние силы: сила тяжести груза и платформыи реакциии
.

2. Так как все внешние силы перпендикулярны оси х, т.е.
, применим закон сохранения количества движения механической системы в проекции на ось х:
. В начальный момент времени система была неподвижна, следовательно,

Выразим количество движения системы в произвольный момент времени. Платформа движется поступательно со скоростью , груз совершает сложное движение, состоящее из относительного движения по платформе со скоростьюи переносного движения вместе с платформой со скоростью., откуда
. Платформа будет перемещаться в сторону, противоположную относительному движению груза.

ПРИМЕР 14.

М

РЕШЕНИЕ.

1. Применим теорему об изменении количества движения механической системы в проекции на ось х. Так как все действующие на систему внешние силы вертикальны, то
, тогда
, откуда
. (1)

2. Выразим проекцию количества движения на ось х для рассматриваемой механической системы
,

еханическая система состоит из прямоугольной вертикальной плиты 1 массойm 1 =18кг, движущейся вдоль горизонтальных направляющих и груза D массой m 2 =6кг. В момент времени t 0 =0, когда плита двигалась со скоростью u 0 =2м/с, груз начал движение вдоль желоба в соответствии с уравнением S=AD=0,4sin(t 2) (S-в метрах, t-в секундах), (рис. 26). Определить скорость плиты в момент времени t 1 =1с, используя теорему об изменении количества движения механической системы.

где ,
-- количество движения пластины и груза соответственно.


;
, где--абсолютная скорость грузаD. Из равенства (1) следует, что К 1х +К 2х =С 1 или m 1 u x +m 2 V Dx =C 1 . (2) Для определения V Dx рассмотрим движение груза D как сложное, считая его движение по отношению к пластине относительным, а движение самой пластины переносным, тогда
, (3)
;или в проекции на ось х:. (4) Подставим (4) в (2):
. (5) Постоянную интегрирования С 1 определим из начальных условий: при t=0 u=u 0 ; (m 1 +m 2)u 0 =C 1 . (6) Подставляя значение постоянной С 1 в уравнение (5), получаем

м/с.

Дифференциальное уравнение движения материальной точки под действием силы F можно представить в следующей векторной форме:

Так как масса точки m принята постоянной, то её можно внести под знак производной. Тогда

Формула (1) выражает теорему об изменении количества движения точки в дифференциальной форме: первая производная по времени от количества движения точки равна действующей на точку силе .

В проекциях на координатные оси (1) можно представить в виде

Если обе части (1) умножить на dt , то получим другую форму этой же теоремы – теорему импульсов в дифференциальной форме:

т.е. дифференциал от количества движения точки равен элементарному импульсу силы, действующей на точку.

Проецируя обе части (2) на координатные оси, получаем

Интегрируя обе части (2) в пределах от нуля до t (рис. 1), имеем

где - скорость точки в момент t ; - скорость при t = 0;

S - импульс силы за время t .

Выражение в форме (3) часто называют теоремой импульсов в конечной (или интегральной) форме: изменение количества движения точки за какой-либо промежуток времени равно импульсу силы за тот же промежуток времени.

В проекциях на координатные оси эту теорему можно представить в следующем виде:

Для материальной точки теорема об изменении количества движения в любой из форм, по существу, не отличается от дифференциальных уравнений движения точки.

Теорема об изменении количества движения системы

Количеством движения системы будем называть векторную величину Q , равную геометрической сумме (главному вектору) количеств движения всех точек системы.

Рассмотрим систему, состоящую изn материальных точек. Составим для этой системы дифференциальные уравнения движения и сложим их почленно. Тогда получим:

Последняя сумма по свойству внутренних сил равна нулю. Кроме того,

Окончательно находим:

Уравнение (4) выражает теорему об изменении количества движения системы в дифференциальной форме: производная по времени от количества движения системы равна геометрической сумме всех действующих на систему внешних сил.

Найдём другое выражение теоремы. Пусть в момент t = 0 количество движения системы равно Q 0 , а в момент времени t 1 становится равным Q 1 . Тогда, умножая обе части равенства (4) на dt и интегрируя, получим:

Или , где:

(S- импульс силы)

так как интегралы, стоящие справа, дают импульсы внешних сил,

уравнение (5) выражает теорему об изменении количества движения системы в интегральной форме: изменение количества движения системы за некоторый промежуток времени равно сумме импульсов действующих на систему внешних сил за тот же промежуток времени.


В проекциях на оси координат будем иметь:

Закон сохранения количества движения

Из теоремы об изменении количества движения системы можно получить следующие важные следствия:

1. Пусть сумма всех внешних сил, действующих на систему, равна нулю:

Тогда из уравнения (4) следует, что при этом Q =const.

Таким образом, если сумма всех внешних сил, действующих на систему, равна нулю, то вектор количества движения системы будет постоянен по 10модулю и направлению.

2. 01Пусть внешние силы, действующие на систему, таковы, что сумма их проекций на какую-нибудь ось (например Ох) равна нулю:

Тогда из уравнений (4`) следует, что при этом Q = const.

Таким образом, если сумма проекций всех действующих внешних сил на какую-нибудь ось равна нулю, то проекция количества движения системы на эту ось есть величина постоянная.

Эти результаты и выражают закон сохранения количества движения системы. Из них следует, что внутренние силы изменить суммарное количество движения системы не могут.

Рассмотрим некоторые примеры:

· Я в л е н и е о т д а ч и и л и о т к а т а. Если рассматривать винтовку и пулю как одну систему, то давление пороховых газов при выстреле будет силой внутренней. Эта сила не может изменить суммарное количество движения системы. Но так как пороховые газы, действуя на пулю, сообщают ей некоторое количество движения, направленное вперед, то они одновременно должны сообщит винтовке такое же количество движения в обратном направлении. Это вызовет движение винтовки назад, т.е. так называемую отдачу. Аналогичное явление получается при стрельбе из орудия (откат).

· Р а б о т а г р е б н о г о в и н т а (п р о п е л л е р а). Винт сообщает некоторой массе воздуха (или воды) движение вдоль оси винта, отбрасывая эту массу назад. Если рассматривать отбрасываемую массу и самолет (или судно) как одну систему, то силы взаимодействия винта и среды как внутренние не могут изменить суммарное количество движения этой системы. Поэтому при отбрасывании массы воздуха (воды) назад самолет (или судно) получают соответствующую скорость движения вперед, такую, что общее количество движения рассматриваемой системы остается равным нулю, так как оно было нулем до начала движения.

Аналогичный эффект достигается действием весел или гребных колес.

· Р е а к т и в н о е д в и ж е н и е. В реактивном снаряде (ракете) газообразные продукты горения топлива с большой скоростью выбрасываются из отверстия в хвостовой части ракеты (из сопла реактивного двигателя). Действующие при этом силы давления будут силами внутренними и они не могут изменить суммарное количество движения системы ракета- пороховые газы. Но так как вырывающиеся газы имеют известное количество движения,направленное назад, то ракета получает при этом соответствующую скорость движения вперед.

Теорема моментов относительно оси.

Рассмотрим материальную точку массы m , движущуюся под действием силы F . Найдем для неё зависимость между моментом векторов mV и F относительно какой-нибудь неподвижной оси Z.

m z (F) = xF - уF (7)

Аналогично для величины m (mV) , если вынести m за скобку будет

m z (mV) = m(хV - уV) (7`)

Беря от обеих частей этого равенства производные по времени, находим

В правой части полученного выражения первая скобка равна 0, так как dx/dt=V и dу /dt = V , вторая же скобка согласно формуле (7) равна

m z (F) , так как по основному закону динамики:

Окончательно будем иметь (8)

Полученное уравнение выражает теорему моментов относительно оси: производная по времени от момента количества движения точки относительно какой-нибудь оси равна моменту действующей силы относительно той же оси. Аналогичная теорема имеет место и для моментов относительно любого центра О.