Закон сохранения энергии уравнение бернулли. Бернулли уравнение

Уравнение Бернулли для потока реальной жидкости, его физический смысл.

Уравнение Бернулли является следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости:

Здесь — плотность жидкости, — скорость потока, — высота, на которой находится рассматриваемый элемент жидкости, — давление в точке пространства, где расположен центр массы рассматриваемого элемента жидкости, — ускорение свободного падения.

В реальных потоках жидкости присутствуют силы вязкого трения. В результате слои жидкости трутся друг об друга в процессе движения. На это трение затрачивается часть энергии потока. По этой причине в процессе движения неизбежны потери энергии. Эта энергия, как и при любом трении, преобразуется в тепловую энергию. Из-за этих потерь энергия потока жидкости по длине потока, и в его направлении постоянно уменьшается.

Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. Это является основной причиной эффекта Магнуса. Закон Бернулли справедлив и для ламинарных потоков газа. Закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю. Для описания течений реальных жидкостей в технической гидромеханике (гидравлике) используют интеграл Бернулли с добавлением слагаемых, учитывающих потери на местных и распределенных сопротивлениях.

Уравнение Бернулли для потока реальной жидкости

Распределение скоростей:

Что такое трубка Пито и для чего она служит?

Трубка Пито - прибор для измерения скорости в точках потока. для измерения динамического напора текущей жидкости или газа. Представляет собой Г-образную трубку. Установившееся в трубке избыточное давление приближённо равно: , где p — плотность движущейся (набегающей) среды; V?- скорость набегающего потока; ξ — коэффициент.

Напорная трубка Пито подключается к специальным приборам и устройствам. Применяется при определении относительной скорости и объёмного расхода в газоходах и вентиляционных системах в комплекте с дифференциальными манометрами.

Применяется как составная часть трубки Прандтля в авиационных приёмниках воздушного давления для возможности одновременного определения скорости и высоты полёта.


Как перевести уравнение Бернулли из размерности длин в размерность давлений?

Уравнение Бернулли в форме напоров, м

Уравнение Бернулли в форме давлений, Па

Потери давления от первого сечения до второго.

Какие существуют режимы течения и как определяются границы существования этих режимов?

1. Ламинарный режим движения. Особенности - слоистый характер течения жидкости, отсутствие перемешивания, неизменность давления и скорости по времени.

2. Переходный режим.

3. Турбулентный режим течения. Заметны: вихреобразование, вращательное движение жидкости, непрерывные пульсации давления и скорости в потоке воды.

1. Ламинарным называется слоистое течение без перемешивания частиц жидкости и без пульсации скорости и давления. При ламинарном течении жидкости в прямой трубе постоянного сечения все линии тока направлены параллельно оси трубы, при этом отсутствуют поперечные перемещения частиц жидкости.

2. Турбулентным называется течение, сопровождающееся интенсивным перемешиванием жидкости с пульсациями скоростей и давлений. Наряду с основным продольным перемещением жидкости наблюдаются поперечные перемещения и вращательные движения отдельных объемов жидкости. 3. Переход от ламинарного режима к турбулентному наблюдается при определенной скорости движения жидкости. Эта скорость называется критической (Vкр=kv/d) .

Значение этой скорости прямо пропорционально кинематической вязкости жидкости v и обратно пропорционально диаметру трубы d .

4. Входящий в эту формулу безразмерный коэффициент k одинаков для всех жидкостей и газов, а также для любых диаметров труб. Этот коэффициент называется критическим числом Рейнольдса Reкр и определяется следующим образом:

Reкр = Vкрd/v = pVкрd/μ ≈ 2300-2320

Как вычисляется число Рейнольдса?

Критерий подобия Рейнольдса (число Рейнольдса) позволяет судить о режиме течения жидкости в трубе. Число (критерий) Рейнольдса Re - мера отношения силы инерции к силе трения

Re = Vd/v = pVd/μ, где μ-динамич.коэф.вязкости, v = μ/p,

При Re < Reкр = 2320 течение является ламинарным;

Re > 3800-4200 течение турбулентное.

Зависимости справедливы только для круглых труб.

При увеличении скорости растут силы инерции . Силы трения при этом больше сил инерции и до некоторых пор выпрямляют траектории струек

При некоторой скорости vкр:

Сила инерции Fи > силы трения Fтр, поток становится турбулентным

Уравнение Бернулли для установившегося движения идеальной жидкости, его физический смысл.

Приведем уравнения Эйлера к виду, удобному для интегрирования, умножив соответственно на dx, dy,

dz и сложив:

Получаем

С учетом, что

-полный дифференциал давления

Окончательное выражение:

Если жидкость находится только под действием силы тяжести и ее плотность неизменна, то

Окончательно

уравнение Бернулли для струйки идеальной жидкости

Уравнение Бернулли для установившегося движения вязкой жидкости.

Распределение скоростей:

1 - элементарная струйка; идеальная жидкость;

2 - реальная (вязкая) жидкость

При движении реальной вязкой жидкости возникают силы трения и вихри, на преодоление которых жидкость затрачивает энергию.

В результате полная удельная энергия жидкости в сечении 1-1 будет больше полной удельной энергии в сечении 2-2 на величину потерянной энергии

Здесь

V 1,2 - средняя скорость потока в сечениях 1,2;

hW1,2 = hпот 1-2 - потерянный напор потери напора между сечениями 1-2;

α1,2 - безразмерный коэффициент Кориолиса - отношение действительной кинетической энергии потока в данном сечении к кинетической энергии потока в том же сечении при равномерном распределении скоростей.

Таким образом, уровень первоначальной энергии, которой обладает жидкость в первом сечении, для второго сечения будет складываться из четырех составляющих: геометрической высоты, пьезометрической высоты, скоростной высоты и потерянного напора между сечениями 1-1 и 2-2
Скорость течения вязкой жидкости в длинной трубке : v = (ΔP / η) · R 2 / (8 · l) , где ΔP — разность давлений на концах трубки, η — вязкость жидкости или газа (сильно зависит от температуры), R — внутренний радиус трубки, l — её длина, l >> R .

Коэффициенты Кориолиса . Величина коэффициентов для ламинарного и турбулентного режимов течения.

Коэффициент Кориолиса - отношение действительной кинетической энергии потока в данном сечении к кинетической энергии потока в том же сечении при равномерном распределении скоростей.

Мощность элементарной струйки:

Для потока

Разделив полученное выражение на и учитывая, что (удельная мощность на 1 Н

веса жидкости = средний напор в сечении Нср ) получаем:

Здесь ? - коэффициент Кориолиса.

При равномерном распределении скоростей α =1 (элементарная струйка/идеальная жидкость),

при неравномерном α>1. V - средняя скорость в живом сечении .

- коэффициент Кориолиса для ламинарного режима.

- коэффициент Кориолиса для турбулентного режима (стремится к 1,0 при увеличении Re)

Рациональный выбор сечений для решения уравнения Бернулли.

Сечения выбираются всегда перпендикулярно направлению движения жидкости и должны располагаться на прямолинейных участках потока

Одно из расчетных сечений необходимо брать там, где нужно определить давление р , высоту z или скорость V , второе, где величины р , z , и V известны

Нумеровать расчетные сечения следует так, чтобы жидкость двигалась от сечения 1-1 к сечению 2-2

Плоскость сравнения 0-0 - любая горизонтальная плоскость. Для удобства её проводят через центр тяжести одного из сечений

Практическое применение уравнения Бернулли: трубка Пито.

Трубка Пито - прибор для измерения скорости в точках потока.

Составив уравнение Бернулли для сечений a-a и b-b , получим

.

Отсюда

Практическое применение уравнения Бернулли: расходомер Вентури.

а) Пренебрегая потерями напора и считая z1 = z2 , напишем уравнение Бернулли для сечений 1-1 и 2-2:

б) Из уравнения неразрывности

в) Из уравнения пьезометра

Решая совместно, получаем:

Энергетическое толкование уравнения Бернулли.

Энергетических характеристик жидкости. Суммарной энергетической характеристикой жидкости является её гидродинамический напор.

С физической точки зрения это отношение величины механической энергии к величине веса жидкости, которая этой энергией обладает. Таким образом, гидродинамический напор нужно понимать как энергию единицы веса жидкости. И для идеальной жидкости эта величина постоянна по длине. Таким образом, физический смысл уравнения Бернулли это закон сохранения энергии для движущейся жидкости .

Здесь с энергетической точки зрения (в единицах энергии, Дж/кг) gz удель-ная потенциальная энергия положения; rР/ удельная потенциальная энергия давления; gz + rР/ удельная потенциальная энергия; u 2 /2 удельная кинети-ческая энергия; и скорость элементарной струйки идеальной жидкости.

Умножив все члены уравнения на удельный вес жидкости g , получим:

gz - весовое давление, Па; P гидродинамическое давление, Па; иr 2 /2 — динамическое давление Па; Hg — полное давление, Па

Геометрическое толкование уравнения Бернулли.

Положение любой частицы жидкости относительно некоторой произвольной линии нулевого уровня 0-0 определяется вертикальной координатой Z . Для реальных гидравлических систем это может быть уровень, ниже которого жидкость из данной гидросистемы вытечь не может. Например, уровень пола цеха для станка или уровень подвала дома для домашнего водопровода.

Все слагаемые уравнения Бернулли имеют размерность длины и их можно изобразить графически.

Значения - нивелирную, пьезометрическую и скоростную высоты можно определить для каждого сечения элементарной струйки жидкости. Геометрическое место точек, высоты которых равны , называется пьезометрической линией . Если к этим высотам добавить скоростные высоты, равные , то получится другая линия, которая называется гидродинамической или напорной линией .

Из уравнения Бернулли для струйки невязкой жидкости (и графика) следует, что гидродинамический напор по длине струйки постоянен.

Линия полного напора и ее построение.

Физический смысл уравнения Бернулли.

Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. Это является основной причиной эффекта Магнуса. Закон Бернулли справедлив и для ламинарных потоков газа. Явление понижения давления при увеличении скорости потока лежит в основе работы различного рода расходомеров (например труба Вентури), водо- и пароструйных насосов. А последовательное применение закона Бернулли привело к появлению технической гидромеханической дисциплины — гидравлики.

Закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю, то есть таких жидкостей, которые не прилипают к поверхности трубы. На самом деле экспериментально установлено, что скорость жидкости на поверхности твердого тела почти всегда в точности равна нулю (кроме случаев отрыва струй при некоторых редких условиях).

закон Бернулли объясняет эффект притяжения между телами, находящимися на границе потока движущейся жидкости (газа). Иногда это притяжение может создавать угрозу безопасности. Например, при движении скоростного поезда «Сапсан» (скорость движения более 200 км/час) для людей на платформах возникает опасность сброса под поезд.Аналогично «затягивающая сила» возникает при движении судов параллельным курсом: например, подобные инциденты происходили с лайнером «Олимпик».

Влияние эпюры скоростей в канале на удельную кинетическую энергию потока. Ее учет в уравнении Бернулли.

Кавитация, причины, условия возникновения, меры борьбы с кавитацией. Определение возможности кавитации с помощью уравнения Бернулли.

Кавитация - явление, возникающее в жидкости при высоких скоростях движения жидкости, т.е. при малых давлениях. Кавитация - нарушение сплошности жидкости с образованием паровых и газовых пузырей (каверн), вызванное падением статического давления жидкости ниже давления насыщенных паров этой жидкости при данной температуре.

p2 = pнп = f(t) - условие возникновения кавитации

Меры борьбы с кавитацией:

Снижение скорости жидкости в трубопроводе;

Уменьшение перепадов диаметров трубопровода;

Повышение рабочего давления в гидросистемах (наддув баков сжатым газом);

Установка всасывающего отверстия насоса не выше допускаемой высоты всасывания (из паспорта насоса);

Применение кавитационно-стойких материалов.

Запишем уравнение Бернулли для сечений 1-1 и 2-2 потока реальной жидкости:

. Отсюда

Правила применения уравнения Бернулли.

Выбираем два сечения потока: 1-1 и 2-2, а также горизонтальную плоскость отсчета 0-0 и записываем в общем виде уравнение Бернулли.

Плоскость сравнения 0-0 - любая горизонтальная плоскость. Для удобства её проводят через центр тяжести одного из сечений

Как закон Всемирного Тяготения Ньютона действовал задолго до самого Ньютона, так и уравнение Бернулли существовало задолго до того, как родился сам Бернулли. Ему удалось лишь облечь это уравнение в наглядную форму, в чем его неоспоримая и огромная заслуга. Зачем мне уравнение Бернулли, спросите Вы, ведь я прекрасно жил и без него. Да, но оно может пригодиться Вам хотя бы на экзамене по гидравлике! Как говорится, «все не так уж плохо, если ты знаешь и можешь сформулировать уравнение Бернулли».

Кто такой Бернулли?

Даниил Бернулли – сын известного ученого Якоба Бернулли, швейцарский математик и физик. Жил с 1700 по 1782 годы, а с 1725 по 1733 трудился в Петербургской Академии наук. Помимо физики и математики Бернулли также изучал медицину наряду с Д’Аламбером и Эйлером считается отцом основателем математической физики. Успехи этого человека позволяют с уверенностью сказать, что это был настоящий «супермозг».

Д. Бернулли (1700-1782)

Идеальная жидкость и течение идеальной жидкости

Помимо известной нам материальной точки и идеального газа существует также идеальная жидкость . Какой-нибудь студент, конечно, может подумать, что эта жидкость – его любимое пиво или кофе, без которого невозможно жить. Но нет, идеальная жидкость – это жидкость, которая абсолютно несжимаема, лишена вязкости и теплопроводности. Тем не менее, такая идеализация дает вполне хорошее описание движения реальных жидкостей в гидродинамике.

Течением жидкости называется движение ее слоев относительно друг друга или относительно всей жидкости.

Помимо того есть разные режимы течения жидкости. Нас интересует тот случай, когда скорость потока в какой-то конкретной точке не меняется со временем. Такой поток называют стационарным. При этом скорость течения в различных точках стационарного потока может различаться.

– совокупность частиц движущейся жидкости.


Вывод уравнения Бернулли

Но как описать движение жидкости? Для этого нам нужно знать вектор скорости частиц, точнее зависимость его от времени. Совокупность скоростей в разных точках потока дает поле вектора скорости.

Рассмотрим стационарное течение жидкости по трубке. В одном месте сечение этой трубки равно S1, а в другой – S2. При стационарном потоке через оба сечения за одинаковый промежуток времени пройдет одинаковое количество жидкости.

Данное уравнение – уравнение неразрывности струи.


Узнав его, Бернулли решил установить связь между давлением и скоростью жидкости в разных сечениях. Полное давление – это сумма статистического (обусловлено потенциальной энергией жидкости) и динамического давлений (обусловлено кинетической энергией). Оказывается, сумма статического и динамического давлений в любом сечении трубы постоянна. Само же уравнение Бернулли имеет вид:

Смысл уравнения Бернулли

Физический смысл уравнения Бернулли. Уравнение Бернулли является следствием закона сохранения энергии. Первый член уравнения Бернулли – это кинетическая энергия, второе слагаемое уравнения Бернулли – потенциальная энергия в поле силы тяжести, третье – работа силы давления при подъеме жидкости на высоту h.

Вот и все, друзья, не так уж и страшно. Совсем немного времени, а Вы уже знаете уравнение Бернулли. Даже если Вы не знаете больше ничего, с этими знаниями идти на экзамен или зачет гораздо лучше, чем просто так. А если Вам необходима помощь в том, как решать задачи на уравнение Бернулли – не стесняйтесь и оформляйте заявку. После того как распишут решение уравнения Бернулли максимально подробно, у Вас не останется пробелов в знаниях.

Для стабильно текущего потока (газа или жидкости) сумма кинетической и потенциальной энергии, давления на единицу объема является постоянной в любой точке этого потока.

Первое и второе слагаемое в Законе Бернулли имеют смысл кинетической и потенциальной энергии, приходящейся на единицу объёма жидкости. А третье слагаемое в нашей формула является работой сил давления и не запасает какую-либо энергию. Из этого можно сделать вывод, что размерность всех слагаемых - единица энергии, приходящаяся на единицу объёма жидкости или газа.

Постоянная в правой части уравнения Бернулли называется полным давлением и зависит в общих случаях, только от линии потока.

Если у вас горизонтальная труба, то Уравнение Бернулли принимает некий другой вид. Так как h=0, то потенциальная энергия будет равняться нулю, и тогда получится:

Из Уравнения Бернулли можно сделать один важный вывод . При уменьшении сечения потока возрастает скорость движения газа или жидкости (возрастает динамическое давление ), но в этот же момент уменьшает статическое давление следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает.

Давайте узнаем, как же летают самолеты. Даниил Бернулли объединил законы механики Ньютона с законом сохранения энергии и условием неразрывности жидкости, и смог вывести уравнение (), согласно которому давление со стороны текучей среды (жидкость или газ) падает с увеличением скорости потока этой среды. В случае с самолетом воздух обтекает крыло самолета снизу медленне, чем сверху. И благодаря этому эффекту обратной зависимости давления от скорости давление воздуха снизу, направленное вверх, оказывается больше давления сверху, напрвленного вниз. В результате, по мере набора самолетом скорости, возрастает направленная вверх разность давлений, и на крылья самолета действует нарастающая по мере разгона подъемная сила. Как только она начинает превышать силу гравитационного притяжения самолета к земле, самолет в буквальном смысле взмывает в небо. Эта же сила удерживает самолет в горизонтальном полете: на крейсерской скорости и высоте подъемная сила уравновешивает силу тяжести.

В Формуле мы использовали:

Плотность жидкости или воздуха

Дифференциальное уравнение вида , где , называется уравнением Бернулли.

Предполагая, что , разделим обе части уравнения Бернулли на . В результате получим: (8.1) Введем новую функцию . Тогда . Домножим уравнение (8.1) на и перейдем в нем к функции z(x) : , т.е. для функции z(x) получили линейное неоднородное уравнение 1-го порядка. Это уравнение решается методами, разобранными в предыдущем параграфе. Подставим в его общее решение вместо z(x) выражение , получим общий интеграл уравнения Бернулли, который легко разрешается относительно y . При добавляется решение y(x)=0 . Уравнение Бернулли можно также решать, не делая перехода к линейному уравнению путем подстановки , а применяя метод Бернулли.

Дифференциальные уравнения в полных дифференциалах.

Определение. Если в уравнении M(x,y)dx+N(x,y)dy=0 (9.1) левая часть есть полный дифференциал некоторой функции U(x,y) , то оно называется уравнением в полных дифференциалах. Это уравнение можно переписать в виде du(x,y)=0 , следовательно, его общий интеграл есть u(x,y)=c.

Например, уравнение xdy+ydx=0 есть уравнение в полных дифференциалах, так как его можно переписать в виде d(xy)=0. Общим интегралом будет xy=c.

Теорема. Предположим, что функции M и N определены и непрерывны в некоторой односвязной области D и имеют в ней непрерывные частные производные соответственно по y и по x . Тогда, для того, чтобы уравнение (9.1) было уравнением в полных дифференциалах, необходимо и достаточно, чтобы выполнялось тождество (9.2).

Доказательство. Доказательство необходимости этого условия очевидно. Поэтому докажем достаточность условия (9.2). Покажем, что может быть найдена такая функция u(x,y) , что и .

Действительно, поскольку , то (9.3) , где - произвольная дифференцируемая функция. Продифференцируем (9.3) по y: . Но , следовательно, .Положим и тогда .Итак, построена функция , для которой , а .

Интегрирующий множитель.

Если уравнение M(x,y)dx + N(x,y)dy = 0 не является уравнением в полных дифференциалах и существует функция µ = µ(x,y) , такая что после умножения на нее обеих частей уравнения получается уравнение

µ(Mdx + Ndy) = 0 в полных дифференциалах, т. е. µ(Mdx + Ndy)du , то функция µ(x,y) называется интегрирующим множителем уравнения. В случае, когда уравнение уже есть уравнение в полных дифференциалах, полагают µ = 1 .

Если найден интегрирующий множитель µ , то интегрирование данного уравнения сводится к умножению обеих его частей на µ и нахождению общего интеграла полученного уравнения в полных дифференциалах.

Если µ есть непрерывно дифференцируемая функция от x и y , то .

Отсюда следует, что интегрирующий множитель µ удовлетворяет следующему уравнению с частными производными 1-го порядка: (10.1). Если заранее известно, что µ= µ(ω) , где ω – заданная функция от x и y , то уравнение (10.1) сводится к обыкновенному (и притом линейному) уравнению с неизвестной функцией µ от независимой переменной ω : (10.2), где , т. е. дробь является функцией только от ω .

Решая уравнение (10.2), находим интегрирующий множитель , с = 1. В частности уравнение M(x,y)dx + N(x,y)dy = 0 имеет интегрирующий множитель, зависящий только от x (ω = x ) или только от y (ω = y ), если выполнены соответственно следующие условия: , или , .

10. Свойства решений ЛДУ II-го порядка (с док-вом). Линейное дифференциальное уравнение (ЛДУ) 2-го порядка имеет следующий вид: , (2.1)

где , , и – заданные функции, непрерывные на том промежутке, на котором ищется решение. Предполагая, что a 0 (x) ≠ 0, поделим (2.1) на и, после введения новых обозначений для коэффициентов, запишем уравнение в виде: (2.2)

Примем без доказательства, что (2.2) имеет на некотором промежутке единственное решение, удовлетворяющее любым начальным условиям , , если на рассматриваемом промежутке функции , и непрерывны. Если , то уравнение (2.2) называется однородным, и уравнение (2.2) называется неоднородным в противном случае. Рассмотрим свойства решений лоду 2-го порядка.

Определение. Линейной комбинацией функций называется выражение , где – произвольные числа.

Теорема. Если и – решение лоду , (2.3) то их линейная комбинация также будет решением этого уравнения.

Дифференциальное уравнение y" +a 0 (x)y=b(x)y n называется уравнением Бернулли .
Так как при n=0 получается линейное уравнение, а при n=1 - с разделяющимися переменными, то предположим, что n ≠ 0 и n ≠ 1. Разделим обе части (1) на y n . Тогда Положив , имеем . Подставляя это выражение, получим , или, что то же самое, z" + (1-n)a 0 (x)z = (1-n)b(x). Это линейное уравнение, которое мы решать умеем.

Назначение сервиса . Онлайн калькулятор можно использовать для проверки решения дифференциальных уравнений Бернулли .

=


Пример 1 . Найти общее решение уравнения y" + 2xy = 2xy 3 . Это уравнение Бернулли при n=3. Разделив обе части уравнения на y 3 получаем Делаем замену Тогда и поэтому уравнение переписывается в виде -z" + 4xz = 4x. Решая это уравнение методом вариации произвольной постоянной , получаем откуда или, что то же самое, .

Пример 2 . y"+y+y 2 =0
y"+y = -y 2

Разделим на y 2
y"/y 2 + 1/y = -1

Делаем замену:
z=1/y n-1 , т.е. z = 1/y 2-1 = 1/y
z = 1/y
z"= -y"/y 2

Получаем: -z" + z = -1 или z" - z = 1

Пример 3 . xy’+2y+x 5 y 3 e x =0
Решение.
а) Решение через уравнение Бернулли.
Представим в виде: xy’+2y=-x 5 y 3 e x . Это уравнение Бернулли при n=3 . Разделив обе части уравнения на y 3 получаем: xy"/y 3 +2/y 2 =-x 5 e x . Делаем замену: z=1/y 2 . Тогда z"=-2/y 3 и поэтому уравнение переписывается в виде: -xz"/2+2z=-x 5 e x . Это неоднородное уравнение. Рассмотрим соответствующее однородное уравнение: -xz"/2+2z=0
1. Решая его, получаем: z"=4z/x

Интегрируя, получаем:
ln(z) = 4ln(z)
z=x 4 . Ищем теперь решение исходного уравнения в виде: y(x) = C(x)x 4 , y"(x) = C(x)"x 4 + C(x)(x 4)"
-x/2(4C(x) x 3 +C(x)" x 4)+2y=-x 5 e x
-C(x)" x 5 /2 = -x 5 e x или C(x)" = 2e x . Интегрируя, получаем: C(x) = ∫2e x dx = 2e x +C
Из условия y(x)=C(x)y, получаем: y(x) = C(x)y = x 4 (C+2e x) или y = Cx 4 +2x 4 e x . Поскольку z=1/y 2 , то получим: 1/y 2 = Cx 4 +2x 4 e x