Гипотеза многолистной модели вселенной. Будущее Вселенной

Исторически представления о Вселенной всегда развивались в рамках мысленных моделей Вселенной, начиная с Древних мифов. В мифологии практически любого народа значительное место занимают мифы о Вселенной - ее происхождении, сущности, структуре, взаимосвязях и возможных причинах конца . В большинстве древних мифов мир (Вселенная) не вечен, он создан высшими силами из некой первоосновы (субстанции), обычно из воды или из хаоса. Время в древних космогонических представлениях чаще всего циклично, т.е. события рождения, существования и гибели Вселенной следуют друг за другом по кругу, подобно всем объектам в природе. Вселенная представляет собой единое целое, все ее элементы связаны между собой, глубина этих связей различна вплоть до возможных взаимопревращений, события следуют друг за другом, сменяя друг друга (зима и лето, день и ночь). Этот мировой порядок противопоставляется хаосу. Пространство мира ограниченно. Высшие силы (иногда боги) выступают или творцами Вселенной или хранителями мирового порядка. Структура Вселенной в мифах предполагает многослойность: наряду с явленным (срединным) миром присутствуют верхний и нижний миры, ось Вселенной (часто в виде Мирового древа или горы), центр мира - место, наделенное особыми сакральными свойствами, существует связь между отдельными слоями мира. Существование мира мыслится регрессивно - от «золотого века» к упадку и гибели. Человек в древних мифах может быть аналогом всего Космоса (весь мир создан из гигантского существа, подобного человеку-великану), что укрепляет связь человека и Вселенной. В древних моделях человек никогда не занимает центрального места. В VI-V вв. до н.э. создаются первые натурфилософские модели Вселенной, наиболее разработанные в Древней Греции . Предельным понятием в этих моделях выступает Космос как единое целое, прекрасное и законосообразное. Вопрос, как образовался мир, дополняется вопросом, из чего устроен мир, как он изменяется. Ответы формулируются уже не образным, а абстрактным, философским языком. Время в моделях чаще всего носит еще циклический характер, но пространство - конечно. В качестве субстанции выступают как отдельные стихии (вода, воздух, огонь - в Милетской школе и у Гераклита), смесь стихий, так и единый, неделимый неподвижный Космос (у элеатов), онтологи- зированное число (у пифагорейцев), неделимые структурные единицы - атомы, обеспечивающие единство мира, - у Демокрита. Именно модель Вселенной Демокрита бесконечна в пространстве. Натурфилософы определяли статус космических объектов - звезд и планет, различия между ними, их роль и взаиморасполо- Жение во Вселенной. В большинстве моделей существенную роль играет движение. Космос построен по единому закону - Логосу, этому же закону подчинен и человек - микрокосм, уменьшенная копия Космоса. Развитие пифагорейских взглядов, геометризующих Космос и впервые четко представивших его в виде сферы, вращающейся вокруг центрального огня и им же окруженного, получило воплощение в поздних диалогах Платона. Логической вершиной взглядов античности на Космос долгие века считалась модель Аристотеля, математически обработанная Птолемеем. В несколько упрощенном виде эта модель, поддерживаемая авторитетом церкви, просуществовала около 2 тыс. лет. По Аристотелю, Вселенная: о есть всеобъемлющее целое, состоящее из совокупности всех воспринимаемых тел; о единственна в своем роде; о пространственно конечна, ограничена крайней небесной сферой, за ней же «нет ни пустоты, ни места»; о вечна, безначальна и бесконечна во времени. При этом Земля неподвижна и находится в центре Вселенной, земное и небесное (надлунное) абсолютно противоположны по своему физико-химическому составу и характеру движения. В X1V-XVI вв., в эпоху Возрождения, вновь возникают натурфилософские модели Вселенной. Они характеризуются, с одной стороны, возвращением к широте и философичности взглядов античности, а с другой - строгой логикой и математикой, унаследованной от Средневековья. В результате теоретических изысканий Николай Кузанский, Н. Коперник, Дж. Бруно предлагают модели Вселенной с бесконечным пространством, необратимым линейным временем, гелиоцентрической Солнечной системой и множеством миров, подобных ей. Г. Галилей, продолжая эту традицию, исследовал законы движения - свойство инерции и первым сознательно использовал мысленные модели (конструкты, позже ставшие основой теоретической физики), математический язык, который он считал универсальным языком Вселенной, сочетание эмпирических методов и теоретической гипотезы, которую опыт должен подтвердить или опровергнуть, и, наконец, астрономические наблюдения с помощью телескопа, значительно расширившие возможности науки. Г. Галилей, Р. Декарт, И. Кеплер заложили основы современных физических и космогонических представлений о мире, и на их базе и на базе открытых Ньютоном законов механики в конце XVII в. сложилась первая научная космологическая модель Вселенной, получившая название классической ньютоновской. Согласно этой модели, Вселенная: О статична (стационарна), т.е. в среднем неизменна во времени; О однородна - все точки ее равноправны; О изотропна - равноправны и все направления; о вечна и пространственно бесконечна, причем пространство и время абсолютны - не зависят друг от друга и от движущихся масс; О имеет отличную от нуля плотность материи; О имеет структуру, вполне постигаемую на языке наличной системы физического знания, что означает бесконечную экстраполиру- емость законов механики, закона всемирного тяготения, которые являются основными законами для движения всех космических тел. Кроме того, во Вселенной применим принцип дальнодействия, т.е. мгновенное распространение сигнала; единство Вселенной обеспечивается единой структурой - атомарным строением вещества. Эмпирической базой данной модели служили все полученные в астрономических наблюдениях данные, для их обработки использовался современный математический аппарат. Эта конструкция опиралась на детерминизм и материализм рационалистической философии Нового времени . Несмотря на обнаружившиеся противоречия (фотометрический и гравитационный парадоксы - следствия экстраполяции модели на бесконечность), мировоззренческая привлекательность и логическая непротиворечивость, а также эвристический потенциал делали ньютоновскую модель единственно приемлемой для космологов вплоть до XX в. К необходимости пересмотра взглядов на Вселенную подтолкнули многочисленные открытия, сделанные в XIX и XX вв.: наличие давления света, делимость атома, дефект масс, модель строения атома, неплоские геометрии Римана и Лобачевского, однако только с появлением теории относительности стала возможной новая квантово-релятивистская модель Вселенной. Из уравнений специальной (СТО, 1905 г.) и общей (ОТО, 1916 г.) теории относительности А. Эйнштейна следует, что пространство и время связаны между собой в единую метрику, зависят от движущейся материи: при скоростях, близких к скоррсти света, пространство сжимается, время растягивается, а вблизи компактных мощных масс пространство-время искривляется, тем самым модель Вселенной геометризируется. Были даже попытки представить всю Вселенную как искривленное пространство-время, узлы и дефекты которого интерпретировались как массы. Эйнштейн, решая уравнения для Вселенной, получил модель, ограниченную в пространстве и стационарную. Но для сохранения стационарности ему потребовалось ввести в решение дополнительный лямбда-член, эмпирически ничем не подкрепленный, по своему действию эквивалентный полю, противостоящему гравитации на космологических расстояниях. Однако в 1922-1924 гг. А.А. Фридман предложил иное решение этих уравнений, из которого вытекала возможность получения трех различных моделей Вселенной в зависимости от плотности материи, но все три модели были нестационарными (эволюционирующими) - модель с расширением, сменяющимся сжатием, осциллирующая модель и модель с бесконечным расширением. В то время отказ от стационарности Вселенной был поистине революционным шагом и воспринимался учеными с большим трудом, так как казался противоречащим всем устоявшимся научным и философским взглядам на природу, неизбежно ведущим к креацианизму . Первое экспериментальное подтверждение нестационарное™ Вселенной было получено в 1929 г. - Хаббл открыл красное смещение в спектрах удаленных галактик, что, согласно эффекту Доплера, свидетельствовало о расширении Вселенной (такую интерпретацию разделяли тогда далеко не все космологи). В 1932- 1933 гг. бельгийский теоретик Ж. Леметр предложил модель Вселенной с «горячим началом», так называемым «Большим взрывом». Но еще в 1940-е и в 1950-е гг. предлагались альтернативные модели (с рождением частиц из с-поля, из вакуума), сохраняющие стационарность Вселенной. В 1964 г. американские ученые - астрофизик А. Пензиас и радиоастроном К. Вильсон обнаружили однородное изотропное реликтовое излучение, явно свидетельствующее о «горячем начале» Вселенной. Эта модель стала доминирующей, была признана большинством космологов. Однако сама эта точка «начала», точка сингулярности рождала множество проблем и споров как по поводу механизма «Большого взрыва», так и потому, что поведение системы (Вселенной) вблизи нее не удавалось описать в рамках известных научных теорий (бесконечно большие температура и плотность должны были сочетаться с бесконечно малыми размерами) . В XX в. выдвигалось множество моделей Вселенной - от тех, которые отвергали в качестве основы теорию относительности, до тех, которые изменяли в базовой модели какой-либо фактор, например «сотовое строение Вселенной» или теория струн. Так, для снятия противоречий, связанных с сингулярностью, в 1980-1982 гг. американский астроном П. Стейнхарт и советский астрофизик А. Линде предложили модификацию модели расширяющейся Вселенной - модель с инфляционной фазой (модель «раздувающейся Вселенной»), в которой первые мгновения после «Большого взрыва» получали новую интерпретацию. Эту модель продолжали дорабатывать и позже, она снимала ряд существенных проблем и противоречий космологии . Исследования не прекращаются и в наши дни: выдвинутая группой японских ученых гипотеза о происхождении первичных магнитных полей хорошо согласуется с описанной выше моделью и позволяет надеяться получить новые знания о ранних стадиях существования Вселенной. Как объект исследования Вселенная слишком сложна, чтобы изучать ее дедуктивно, возможность продвигаться вперед в ее познании дают именно методы экстраполяции и моделирования. Однако эти методы требуют точного соблюдения всех процедур (от постановки проблемы, выбора параметров, степени подобия модели и оригинала до интерпретации полученных результатов), и даже при идеальном выполнении всех требований результаты исследований будут носить принципиально вероятностный характер. Математизация знаний, значительно усиливающая эвристические возможности многих методов, является общей тенденцией науки XX в. Не стала исключением и космология: возникла разновидность мысленного моделирования - математическое моделирование, метод математической гипотезы. Сущность его в том, что сначала решаются уравнения, а затем подыскивается физическая интерпретация полученных решений. Данный порядок действий, не характерный для науки прошлого, обладает колоссальным эв ристическим потенциалом. Именно этот метод привел Фридмана к созданию модели расширяющейся Вселенной, именно таким путем был открыт позитрон и совершено еще много важных открытий в науке конца XX в. Компьютерные модели, в том числе и при моделировании Вселенной, рождены развитием компьютерной техники. На их основе доработаны модели Вселенной с инфляционной фазой; в начале XXI в. обработаны большие массивы информации, полученные с космического зонда, и создана модель развития Вселенной с учетом «темной материи» и «темной энергии». Со временем изменялась трактовка многих фундаментальных понятий. Физический вакуум понимается уже не как пустота, не как эфир, а как сложное состояние с потенциальным (виртуальным) содержанием материи и энергии. При этом обнаружено, что известные современной науке космические тела и поля составляют незначительный процент массы Вселенной, а большая часть массы заключена в косвенно обнаруживающих себя «темной материи» и «темной энергии». Исследования последних лет показали, что значительная часть этой энергии действует на расширение, растягивание, разрывание Вселенной, что может привести к фиксируемому ускорению расширения }