Т. Переменный ток

В замкнутом контуре, содержащем заряженный конденсатор и катушку индуктивности, возникают электрические колебания. Они происходят следующим образом. Конденсатор начинает разряжаться, через катушку проходит ток, в ней создается магнитное поле и возникает электродвижущая сила самоиндукции. Электродвижущая сила самоиндукции поддерживает ток после того, как конденсатор полностью разрядится; это приводит к тому, что конденсатор вновь заряжается, но уже с полярностью пластин обратной исходной. Затем процесс повторяется, но ток в контуре имеет обратное направление. Таким образом, при электрических колебаниях в конденсаторе контура имеется переменное электрическое поле, а в катушке - переменное магнитное поле, которые взаимно переходят одно в другое посредством образующегося в контуре переменного тока.

Если частота переменного электрического и магнитного полей достаточно высока (в области сверхвысоких частот), то взаимный переход их может происходить непосредственно путем взаимной индукции в свободном пространстве.

Совокупность взаимно связанных и переходящих одно в другое высокочастотных электрического и магнитного полей называется электромагнитным полем. Электромагнитное поле, образующееся в колебательном контуре и называемое полем индукции, отличается тем, что его электрическая и магнитная составляющие связаны с элементами контура (емкостью и индуктивностью) и потому могут быть использованы в какой-то мере независимо одна от другой.

Электромагнитное поле, образовавшееся в свободном пространстве и называемое полем излучения, распространяется со скоростью света от источника по всем направлениям, образуя электромагнитную волну.

В электромагнитной волне электрическая и магнитная составляющие могут быть разделены только условно. Источником электромагнитных волн является колебательный контур генератора, снабженный излучателем волн - антенной.

Электрические колебания используют для лечебных целей: а) при общей дарсонвализации (см.), когда воздействие осуществляется высокочастотным импульсным электромагнитным полем, образуемым при определенных условиях в соленоиде колебательного контура аппарата, внутри которого помещается больной; б) при индуктотермии (см.), когда воздействие производится преимущественно магнитным полем, образуемым с помощью спирали, обтекаемой высокочастотным током и наложенной на область тела больного, подлежащую воздействию; в) при терапии нолем УВЧ, при которой воздействие осуществляется электрическим полем, образующимся между пластинами конденсатора, подключенного к колебательному контуру аппарата; между ними помещается область тела больного, подлежащая воздействию.

Первичное действие на ткани организма высокочастотного магнитного поля связано главным образом с образованием в тканях-проводниках вихревых токов, что при достаточной их мощности дает тепловой эффект.

Высокочастотное электрическое поле в тканях-проводниках вызывает колебательное движение ионов (ток проводимости), в тканях-диэлектриках происходят поляризационные явления (основное значение имеет ориентационная поляризация, в результате которой в связи с переменным характером поля молекулы совершают вращательные колебания - осцилляции, сопровождающиеся как тепловым эффектом, так и более глубокими структурно-химическими изменениями в тканях).

Первичное действие электромагнитного поля на ткани организма соответствует совместному действию его электрической и магнитной составляющих.

Электромагнитные волны характеризуются частотой колебаний или длиной волны. Длина волны - это расстояние, на которое она распространяется за один период колебаний ее электрической или магнитной составляющей. Различные по длине волны по-разному действуют на ткани организма. Среди радиоволн различают длинные, средние, короткие и ультракороткие (см. таблицу).

Для лечебных целей (микроволновая терапия) используют волны дециметрового и сантиметрового диапазонов. Облучение участка поверхности тела больного осуществляется направленным потоком волн от излучателя при помощи специальных рефлекторов или волноводов.

Первичное действие микроволн на ткани организма - это действие электромагнитного поля сверхвысокой частоты; в основном оно заключается в колебаниях ионов и других заряженных частиц, имеющихся в тканях-проводниках, а также в осцилляциях дипольных молекул в тканях-диэлектриках.

Особенностью действия микроволн является поглощение их в поверхностно расположенных слоях тканей; особое значение приобретают при этих частотах диэлектрические свойства воды (см. Электролечение).

План лекции

1. Колебательные контуры. Квазистационарные токи.

2. Собственные электрические колебания.

2.1. Собственные незатухающие колебания.

2.2. Собственные затухающие колебания.

3. Вынужденные электрические колебания.

3.1. Сопротивление в цепи переменного тока.

3.2. Ёмкость в цепи переменного тока.

3.3. Индуктивность в цепи переменного тока.

3.4. Вынужденные колебания. Резонанс.

3.5. Проблема косинуса фи.

  1. Колебательные контуры. Квазистационарные токи.

Колебания электрических величин - заряда, напряжения, тока - можно наблюдать в цепи, состоящей из последовательно соединённых сопротивления (R ), ёмкости (C ) и катушки индуктивности (L ) (рис. 11.1).

Рис. 11.1.

При положении 1 переключателя К , конденсатор заряжается от источника.

Если теперь переключить его в положение 2, то в цепи RLC возникнут колебания с периодомT , аналогичные колебаниям груза на пружине.

Колебания, происходящие только за счёт внутренних энергетических ресурсов системы, называются собственными. Первоначально энергия была сообщена конденсатору и локализована в электростатическом поле. При замыкании конденсатора на катушку, в цепи появляется разрядный ток, а в катушке - магнитное поле. Э.д.с. самоиндукции катушки будет препятствовать мгновенной разрядке конденсатора. Через четверть периода конденсатор полностью разрядится, но ток будет продолжать течь, поддерживаемый электродвижущей силой самоиндукции. К моментуэта э.д.с. перезарядит конденсатор. Ток в контуре и магнитное поле уменьшатся до нуля, заряд на обкладках конденсатора достигнет максимального значения.

Эти колебания электрических величин в контуре будут происходить неограниченно долго, если сопротивление контура R = 0. Такой процесс называютсобственные незатухающие колебания . Подобные колебания мы наблюдали и в механической колебательной системе, когда в ней отсутствует сила сопротивления. Если сопротивлением резистораR (силой сопротивления в механическом осцилляторе) пренебречь нельзя, то в подобных системах будут происходитьсобственные затухающие колебания .

На графиках рис. 11.2. представлены зависимости заряда конденсатора от времени в случае незатухающих (а ) и затухающих (б ,в ,г ) колебаний. Характер затухающих колебаний меняется с увеличением сопротивления резистораR . Когда сопротивление превысит определённоекритическое значениеR к, колебания в системе не возникают. Происходит монотонный апериодический разряд конденсатора (рис. 11.2.г .).

Рис. 11.2.

Прежде, чем перейти к математическому анализу колебательных процессов, сделаем одно важное замечание. При составлении уравнений колебаний мы будем пользоваться правилами Кирхгофа (законами Ома), которые справедливы, строго говоря, для постоянного тока. Но в колебательных системах ток меняется во времени. Однако, и в этом случае можно воспользоваться этими законами для мгновенного значения тока, если скорость изменения тока не слишком высока. Такие токи называются квазистационарными («квази» (лат.) - как будто). Но что значит скорость «слишком» или «не слишком» высока? Если ток изменится на некотором участке цепи, тот импульс этого изменения достигнет самой дальней точки контура спустя время:

.

Здесь l - характерный размер контура, ас - скорость света, с которой сигнал распространяется в цепи.

Скорость изменения тока считается не слишком высокой, а ток квазистационарным, если:

,

где Т - период изменения, тот есть характерное время колебательного процесса.

Например, для цепи длиной 3 м запаздывание сигнала составит ==
= 10 ‑8 с. То есть переменный ток в этой цепи можно считать квазистационарным, если его период более10 –6 с, что соответствует частоте=10 6 Гц. Таким образом, для частот 010 6 Гц в рассматриваемой цепи могут быть использованы правила Кирхгофа для мгновенных значений тока и напряжений.

Период колебания такого тока много больше времени распространения что значит что процесс за время τ почти не изменится. Свободные колебания в контуре без активного сопротивления Колебательный контур – цепь из индуктивности и емкости. Найдем уравнение колебания.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция

Электрические колебания

План

  1. Квазистационарные токи
  2. Свободные колебания в контуре без активного сопротивления
  3. Переменный ток
  4. Излучение диполя
  1. Квазистационарные токи

Электромагнитное поле распространяется со скоростью света.

l – длина проводника

Условие квазистационарных токов:

Период колебания такого тока много больше времени распространения, что значит, что процесс за время τ почти не изменится.

Мгновенные значения квазистационарных токов подчиняются законам Ома и Кирхгофа.

2)Свободные колебания в контуре без активного сопротивления

Колебательный контур – цепь из индуктивности и емкости.

Найдем уравнение колебания. Положительным будем считать ток зарядки конденсатора.

Разделив обе части уравнения на L , получим

Пусть

Тогда уравнение колебаний примет вид

Решение такого уравнения имеет вид:

Формула Томсона

Сила тока опережает по фазе U на π /2

  1. Свободные затухающие колебания

Всякий реальный контур обладает активным сопротивлением, энергия идет на нагревание, колебания затухают.

При

Решение:

Где

Частота затухающих колебаний меньше собственной частоты

При R=0

Логарифмический декремент затухания:

Если затухание невелико

Добротность:

  1. Вынужденные электрические колебания

Напряжение на емкости отстает по фазе от силы тока на π /2, а напряжение на индуктивности опережает по фазе ток на π /2. Напряжение на активном сопротивлении изменяется в фазе с током.

  1. Переменный ток

Полное электрическое сопротивление (импеданс)

Реактивное индуктивное сопротивление

Реактивное емкостное сопротивление

Мощность в цепи переменного тока

Действующие значения в цепи переменного тока

с osφ - коэффициент мощности

  1. Излучение диполя

Простейшая система, излучающая ЭМВ – электрический диполь.

Дипольный момент

r – радиус-вектор заряда

l – амплитуда колебаний

Пусть

Волновая зона

Волновой фронт сферический

Сечения волнового фронта через диполь – меридианы , через перпендикуляры к оси диполя – параллели .

Мощность излучения диполя

Средняя мощность излучения диполя пропорциональна квадрату амплитуды электрического момента диполя и 4 степени частоты.

а – ускорение колеблющегося заряда.

Большинство естественных и искусственных источников электромагнитного излучения удовлетворяет условию

d – размер области излучения

Или

v – средняя скорость зарядов

Такой источник электромагнитного излучения – диполь Герца

Область расстояний до диполя Герца называется волновой зоной

Полная средняя интенсивность излучения диполя Герца

Всякий заряд, движущийся с ускорением, возбуждает электромагнитные волны, причем мощность излучения пропорциональна квадрату ускорения и квадрату заряда

Другие похожие работы, которые могут вас заинтересовать.вшм>

6339. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ 48.84 KB
Колебаниями называются процессы движения или изменения состояния в той или иной степени повторяющиеся во времени. В зависимости от физической природы повторяющегося процесса различают: ― механические колебания колебания маятников струн частей машин и механизмов мостов крыльев самолетов...
5890. КОЛЕБАНИЯ РОТОРОВ 2.8 MB
Положение сечения вала для различных значений фазы колебаний изображено на рис. Резонансное увеличение амплитуды колебаний будет продолжаться до тех пор пока вся энергия колебаний не будет уходить на преодоление сил трения или пока вал не разрушится.
21709. УЛЬТРАЗВУКОВЫЕ КОЛЕБАНИЯ И ПРЕОБРАЗОВАТЕЛИ 34.95 KB
Они могут быть использованы для преобразования электрической энергии в механическую и обратно. В качестве материалов для преобразователей применяются вещества с сильно выраженной связью упругого и электрического или магнитного состояний. выше порога слышимости для человеческого уха то такие колебания называют ультразвуковыми УЗК. Для получения УЗ-колебаний применяют пьезоэлектрические магнитострикционные электромагнитно-акустические ЭМА и другие преобразователи.
15921. Электрические станции 4.08 MB
Под энергосистемой понимают совокупность электростанций электрических и тепловых сетей соединенных между собой и связанных общностью режима в непрерывном процессе производства преобразования и распределения электрической энергии и тепла при общем управлении этим режимом...
2354. ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА МЕТАЛЛИЧЕСКИХ СПЛАВОВ 485.07 KB
Преимущества меди обеспечивает ей широкое применение в качестве проводникового материала следующие: Малое удельное сопротивление. Интенсивное окисление меди происходит только при повышенных температурах. Получение меди. Зависимость скорости окисления от температуры для железа вольфрама меди хрома никеля на воздухе После ряда плавок руды и обжигов с интенсивным дутьем медь предназначаемую для электротехнических целей обязательно подвергают электролитической очистке полученные после электролиза катодные пластины...
6601. 33.81 KB
Явлением стробоскопического эффекта является применение схем включения ламп таким образом чтобы соседние лампы получали напряжение со сдвигом фаз т. Защитный угол светильника – угол заключённый между горизонталью проходящей через тело накала лампы и линией соединяющей крайнюю точку тела накала с противоположным краем отражателя. где h расстояние от тела накала лампы до уровня выходного отверстия светильника...
5773. Гибридные электрические станции на территории острова Сахалин 265.76 KB
Основные виды возобновляемых природных энергетических ресурсов ВПЭР Сахалинской области это геотермальные ветроэнергетические и приливные. Наличие значительных ресурсов ветра и приливной энергии обусловлено уникальностью островного расположения области а присутствие ресурсов термальных вод и парогидротерм перспективных для освоения активной вулканической...
2093. ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЦЕПЕЙ КАБЕЛЬНЫХ ЛИНИЙ СВЯЗИ 90.45 KB
Эквивалентная схема цепи связи R и G обусловливают потери энергии: первый потери на тепло в проводниках и других металлических частях экран оболочка броня второй потери в изоляции. Активное сопротивление цепи R складывается из сопротивления проводников самой цепи и дополнительного сопротивления обусловленного потерями в окружающих металлических частях кабеля соседние проводники экран оболочка броня. При расчете активного сопротивления обычно суммируются...
2092. ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВОЛОКОННО-ОПТИЧЕСКИХ КАБЕЛЕЙ СВЯЗИ 60.95 KB
В одномодовых световодах диаметр сердечника соизмерим с длиной волны d^λ и по нему передается лишь один тип волны мода. В многомодовых световодах диаметр сердечника больше длины волны d λ и по нему распространяется большое число волн. Информация передается через диэлектрик световод в форме электромагнитной волны. Направление волны осуществляется за счет отражений от границы с разными значениями показателя преломления у сердечника и оболочки п1 и п2 световода.
11989. Специальные электрические детонаторы мгновенного действия и специальные водостойкие капсюли-детонаторы с различными степенями замедления 17.47 KB
Пиротехнические замедлители для СКД разработаны на базе окислительновосстановительных реакций имеющих высокую стабильность горения среднеквадратичное отклонение менее 15 от общего времени горения даже после длительного хранения в негерметичном состоянии в сложных климатических условиях. Разработано два состава: со скоростью горения 0004÷004м с и временем замедления – до 10с размер замедляющего элемента до 50мм; со скоростью горения 004÷002м с обладает повышенными воспламенительными свойствами.

Колебательный контур — один из основных элементов радиотехнических систем. Различают линейные и нелинейные колебательные контуры . Параметры R , L и С линейного колебательного контура не зависят от интенсивности колебаний, а период колебаний не зависит от амплитуды.

При отсутствии потерь (R = 0 ) в линейном колебательном контуре происходят свободные гармонические колебания .

Для возбуждения колебаний в контуре конденсатор предвари-тельно заряжают от батареи аккумуляторов, сообщив ему энергию W p , и переводят переключатель в положение 2.

После замыкания цепи конденсатор начнет разряжаться через катушку индуктивности, теряя энергию. В цепи появится ток, вызывающий переменное магнитное поле . Переменное магнитное поле, в свою очередь приводит к созданию вихревого электрического поля, пре-пятствующего току, в результате чего изменение тока происходит постепенно. По мере увеличения тока через катушку возрастает энергия магнитного поля W м . Полная энергия W электромагнитного поля контура остается постоянной (при отсутствии сопротивления) и равной сумме энергий магнитного и электрического полей. Пол-ная энергия, в силу закона сохранения энергии , равна максимальной энергии электрического или магнитного поля:

,

где L — индуктивность катушки, I и I m — сила тока и ее максимальное значение, q и q m — заряд конденсатора и его максимальное значение, С — емкость конденсатора .

Процесс перекачки энергии в колебательном контуре между электрическим полем конденса-тора при его разрядке и магнитным полем, сосредоточенным в катушке, полностью аналогичен процессу превращения потенциальной энергии растянутой пружины или поднятого груза матема-тического маятника в кинетическую энергию при механических колебаниях последних.

Ниже приводится соответствие между механическими и электрическими величинами при колебательных процессах.

Дифференциальное уравнение , описывающее процессы в колебательном контуре, можно получить, приравняв производную по полной энергии контура к нулю (поскольку полная энергия постоянна) и заменив в полученном уравнении ток на производную заряда по времени. В окончательном виде уравнение выглядит так:

.

Как видно, уравнение ничем не отличается по форме от соответствующего дифференциального уравнения для свободных механических колебаний шарика на пружине. Заменив механические параметры системы на электрические с помощью приведенной выше таблицы, мы в точности получим уравнение .

По аналогии с решением дифференциального уравнения для механической колебательной системы циклическая частота свободных электрических колебаний равна:

.

Период свободных колебаний в контуре равен:

.

Формула называется формулой Томсона в честь английского физика У. Томсона (Кельвина), который ее вывел.

Увеличение периода свободных колебаний с возрастанием L и С объясняется тем, что при увеличении индуктивности ток медленнее нарастает и медленнее падает до нуля, а чем больше емкость, тем больше времени требуется для перезарядки конденсатора.

Гармонические колебания заряда и тока описываются теми же уравнениями, что и их механические аналоги:

q = q m cos ω 0 t,

i = q" = - ω 0 q m sin ω 0 t = I m cos (ω 0 t + π/2),

где q m — амплитуда колебаний заряда, I m = ω 0 q m — амплитуда колебаний силы тока. Колебания силы тока опережают по фазе на π/2 колебания заряда.