Дозиметрия. Методы дозиметрии ионизирующих излучений Методы дозиметрии ионизирующих излучений

Дозиметрия (ионизирующих излучений) - это раздел прикладной ядерной физики, предметом исследования которого является определение физических величин, характеризующих воздействие ионизирующих излучений (см. Излучения ионизирующие) на среду, и разработка методов и средств для измерения этих величин. В круг задач дозиметрии входят: измерение и расчет доз (см. Дозы ионизирующих излучений) в полях источников излучений и в биологических объектах (тканевая дозиметрия), измерение активности и др.

Дозиметрия основана на измерении ионизации, которую производит излучение в воздухе или газе, или на измерении энергии излучения, поглощенной средой.

Образующиеся при ионизации газовой среды отрицательные и положительные ионы начинают двигаться в электрическом поле к соответствующим электродам, и в цепи возникает электрический ток, величина которого измеряется регистрирующим прибором.

Методы измерения поглощенной энергии в плотных средах основаны на ряде физических явлений, сопутствующих прохождению излучений через вещество. Старейший метод регистрации ионизирующих излучений - фотографический. Этим методом были получены первые сведения о новом виде энергии. Фотопленку можно использовать и для измерения величины доз, так как степень почернения пленки пропорциональна поглощенной энергии. На регистрации световых вспышек (сцинтилляции), которые испускают возбужденные ионизирующими излучениями и молекулы, основан сцинтилляционный метод. Световые вспышки регистрируются (см.) (ФЭУ), включенным в соответствующую электронную схему. Химический метод дозиметрии заключается в выявлении необратимых химических изменений, происходящих под действием излучений в веществе, чаще всего в водных растворах. В этих целях широко используется реакция превращения двухвалентного железа в трехвалентное (в ферро-сульфатном дозиметре). Регистрацию необратимых химических изменений осуществляют различными физическими или химическими методами. Все более широкое распространение получают люминесцентные методы дозиметрии, поскольку под действием ионизирующих излучений в некоторых веществах образуются скрытые центры свечения (люминесценции), которые проявляются при последующем световом (фотолюминесценция) или тепловом (термолюминесценция) воздействии на облученные вещества. При этом свечение регистрируется ФЭУ. Перспективным является использование полупроводников для целей дозиметрии Наиболее точным, но технически сложным методом дозиметрии является калориметрический, состоящий в прямом измерении тепловой энергии, в которую преобразуется в конечном счете энергия излучения.

Особый интерес представляет тканевая дозиметрия; так как непосредственное измерение поглощенных доз в живом организме невозможно, изготовляют тканеэквивалентные фантомы (см. ) человека или животных, внутри которых и измеряют излучения одним из вышеописанных способов.

Определение активности радиоактивных препаратов, используемых для лечения опухолей, изучение процессов переноса и обмена веществ в организме и др. производится путем измерения числа частиц, испускаемых препаратом в единицу времени. Этот раздел дозиметрии называется радиометрией. См. также Дозиметрический контроль, Дозиметры ионизирующих излучений, Счетчики ядерных излучений.

Дозиметрия ионизирующих излучений - раздел прикладной ядерной физики, в котором рассматриваются свойства ионизирующих излучений, физические величины, характеризующие поле излучения и взаимодействие излучения с веществом (дозиметрические величины). В более узком смысле слова Д. и. и. - совокупность методов измерения этих величин. Важнейший признак дозиметрических величин - их связь с радиационно-индуцированными эффектами, возникающими при облучении объектов живой и неживой природы. Под радиационно-индуцированными эффектами в общем смысле понимают любые изменения в облучаемом объекте, вызванные воздействием ионизирующих излучений . Основной дозиметрической величиной является доза ионизирующего излучения и ее модификации. Задача Д. и. и. - описание дозного поля, сформированного в живом организме в реальных условиях облучения.

Необходимость разработки Д. и. и. возникла вскоре после открытия Рентгеном (W.К. Rö ntgen) в 1895 г. излучения, названного его именем (см. Рентгена лучи ). Интенсивное накопление данных по биологическому действию рентгеновского излучения, с одной стороны, открывало реальную перспективу его применения в медицине, а с другой - указывало на опасность неконтролируемого облучения живого организма. В результате встал вопрос о дозиметрическом обеспечении практического применения источников ионизирующих излучений. В начале 20 в. основными источниками излучения были радий и рентгеновские аппараты, и Д. и. и. сводилась фактически к дозиметрии фотонного ионизирующего излучения (рентгеновского и гамма-излучения). Затем по мере развития технических средств ядерной физики, создания и усовершенствования ускорителей заряженных частиц и особенно после пуска в 1942 г. первого ядерного реактора число источников и связанных с ними видов ионизирующих излучений существенно расширились. В соответствии с этим появились методы дозиметрии потоков заряженных частиц, нейтронов, высокоэнергетического тормозного излучения и др. Стал расти и список дозиметрических величин, соответствующих задачам многообразного практического применения ионизирующих излучений различной природы.

Физической основой Д. и. и. является преобразование энергии излучения в процессе его взаимодействия с атомами или их ядрами, электронами и молекулами облучаемой среды, в результате которого часть этой энергии поглощается веществом. Поглощенная энергия является первопричиной процессов, приводящих к наблюдаемым радиационно-индуцированным эффектам, и потому дозиметрические величины оказываются связанными с поглощенной энергией излучения.

Многообразие условий облучения и многофакторный характер его последствий не позволяют обходиться единственной дозиметрической величиной, приспосабливая ее к изменению этих условий и факторов. Необходим целый набор дозиметрических величин, из которых в зависимости от условий облучения и поставленной задачи выбирают наиболее адекватную меру радиационно-индуцированного эффекта. Примером такой величины является введенный Международной комиссией по радиологическим единицам (МКРЕ) для целей радиационной безопасности показатель эквивалентной дозы (см. Доза ионизирующего излучения ) в точке радиационного поля - максимальная эквивалентная доза внутри тканеэквивалентного шара диаметром 30 см при совмещении центра этого шара с данной точкой. Практическое применение этого показателя встречает определенные трудности, ибо проблему адекватности дозиметрии пока нельзя считать полностью решенной.

При Д. и. и. используют как инструментальные, так и расчетные методы. Все дозиметрические приборы устроены по принципу регистрации радиационно-индуцированных эффектов в некотором модельном объекте - детекторе ионизирующего излучения. В ранний период становления Д. и. и, использовались фотографическое действие ионизирующих излучений, химические превращения и выделение тепла. По мере развития методов регистрации элементарных частиц развивались и методы Д. и. и. В современных условиях используется широкий спектр радиационно-индуцированных эффектов. К уже упомянутым можно добавить ионизационные эффекты в газах и конденсированных средах, изменение электрических свойств полупроводников, деструктивные повреждения твердых тел,

люминесценцию, сцинтилляцию и др.

Особое место занимает биологическая дозиметрия использующая в качестве меры дозиметрической величины количественные радиобиологические эффекты, например хромосомные аберрации, изменение морфологического состава крови и другие показатели, однозначно связанные с Д. и. и. (см. Лучевая болезнь , Радиочувствительность ).

Методы Д. и. и. можно классифицировать по разным признакам. Так, в зависимости от вида регистрируемого эффекта различают ионизационный, фотографический, химический, люминесцентный, калориметрический, сцинтилляционный методы, метод следов повреждения и др. При этом имеет место однозначная количественная связь между изменением физических или химических свойств детектора излучения и поглощенной энергией. В клинической дозиметрии распространены ионизационные методы, в которых детектором служат ионизационная камера, твердотельные люминесцентные кристаллы, полупроводники. Последние привлекают малыми размерами детектора.

В СССР выпускают стационарные, носимые и индивидуальные дозиметрические приборы. Стационарные дозиметры применяют в клинической практике, а носимые наиболее часто используют для оценки радиационной обстановки в целях радиационной защиты. Они имеют автономное питание и потому могут использоваться в любой обстановке, в т.ч. в полевых условиях. Индивидуальные дозиметры предназначены для оценки дозы, получаемой лицами, работающими в контакте с ионизирующим излучением. Они могут быть прямопоказывающими (рис. а, б ) или состоять из носимых персоналом ионизационных или термолюминесцентных детекторов (в), показания которых, пропорциональные дозе излучения, определяются на специальном считывающем устройстве.

Клиническая дозиметрия - раздел Д. и. и., занимающийся измерениями и расчетами величин, характеризующих физические и биофизические эффекты облучения больных, получающих лучевую терапию . Основная задача клинической дозиметрии состоит в количественном описании пространственного и временного распределения поглощенной энергии излучения в теле облучаемого больного,

а также в поиске, обосновании и выборе индивидуально оптимизируемых условий его облучения.

Основными понятиями и величинами клинической дозиметрии являются поглощенная доза (см. Доза ионизирующих излучений ), дозное поле, дозиметрический фантом, мишень. Дозное поле - это пространственное распределение поглощенной дозы (или ее мощности) в облучаемой части тела больного, тканеэквивалентной среде или дозиметрическом фантоме, моделирующем тело больного по физическим эффектам взаимодействия излучения с веществом, форме и размерам органов и тканей и их анатомическим взаимоотношениям. Информацию о дозном поле представляют в табличном, матричном виде, а также в виде кривых, соединяющих точки одинаковых значений (абсолютных или относительных) поглощенной дозы. Такие кривые называют изодозами, а их семейства - картами изодоз. За условную единицу (или 100%) можно принять поглощенную дозу в любой точке дозного поля, в частности максимальную поглощенную дозу, которая должна соответствовать подлежащей облучению мишени (т.е. области, охватывающей клинически выявленную и предполагаемую зону ее распространения).

Формирование дозного поля зависит от вида и источника излучения, от метода облучения (внешнего, внутреннего, статического, подвижного и др.), телосложения больного, а также от типа радиационного терапевтического аппарата. Поэтому в состав технической документации аппарата входят атлас дозных полей и рекомендации по его практическому использованию. При необходимости (для новых вариантов и сложных планов облучения) в лечебных учреждениях выполняют фантомные измерения дозных полей, пользуясь клиническими дозиметрами с малогабаритными ионизационными камерами или другими (полупроводниковыми, термолюминесцентными) детекторами, анализаторами дозного поля или изодозографами. Термолюминесцентные детекторы используют также для контроля поглощенных доз у больных.

Лучевой терапевт совместно с инженером-физиком ведет дозиметрическое планирование - выбирает метод облучения, оптимизирует условия облучения больного путем расчета конкурирующих вариантов дозных полей,

определяет технологию облучения на конкретном аппарате, а также осуществляет контроль выполнения принятого плана и его динамическую корректировку в процессе лучевого лечения. В связи с развитием методов и средств вычислительной техники, появлением быстродействующих ЭВМ с большим объемом памяти и средств автоматизированного ввода в ЭВМ исходной графической и текстовой информации о больном происходит постепенный переход от ручного к компьютерному планированию облучения. При этом открываются возможности решения обратной задачи клинической дозиметрии - определения условий облучения по задаваемому врачом дозному полю.

В системе МЗ СССР имеется радиационная метрологическая служба, которая ведет проверку клинических дозиметров и дозиметрическую аттестацию радиационных аппаратов. В 1988 г. в СССР начат переход к метрологическому обеспечению лучевой терапии на основе непосредственных измерений поглощенной дозы в воде, прослеживаемых до государственного первичного эталона единицы ее мощности. Все это способствует повышению точности планирования и осуществления облучения.

Согласно современным международным требованиям, для повышения эффективности лучевой терапии в клинической дозиметрии нужно стремиться к дозированию облучения больного с погрешностью не более 5%, по поглощенной дозе в мишени, а измерения поглощенных доз вести с погрешностью не более 3%.

Библиогр.: Иванов В.И. Курс дозиметрии, М., 1988; Клеппер Л.Я. Формирование дозовых полей дистанциойными источниками излучения, М., 1986, библиогр.; Кронгауз А.Н., Ляпидевский В.К. и Фролова А.В. Физические основы клинической дозиметрии, М., 1969; Ратнер Т.Г. и Фадеева М.А. Техническое и дозиметрическое обеспечение дистанционной гамма-терапии, М., 1982, библиогр.

Наши задачи: познакомить с естественными и искусственными источниками излучений, единицами измерения, величинами опасных и безопасных доз радиации.

Человечество всегда жило вместе с радиацией. Но только в двадцатом веке возник вопрос о действии излучений на человека и окружающую среду. Возник, т.к. появились искусственные источники радиации.

В 1896 году французский физик А.Беккерель открыл явление радиоактивности: он обнаружил, что соль урана испускает какое-то излучение.

Изучение поведения открытых Беккерелем лучей при прохождении ими магнитного поля показало, что они состоят из трех компонент (рис.1). Поскольку ничего не было известно о природе этих лучей, их назвали просто первыми буквами греческого алфавита: α-, β- и γ- излучениями. Впоследствии выяснилось, что α- частицы - это ядра гелия (заряжены положительно), β- частицы - это электроны (отрицательные и на рисунке отклоняются в другую сторону), γ- лучи - электромагнитное излучение (нейтральное, магнитным полем не отклоняется).

Годом ранее Рентген открыл излучение, которое он назвал "Х-лучами" (первый снимок руки в этих лучах на рис.2). Оно оказалось тоже электромагнитным. Беккерель один из первых столкнулся с самым неприятным свойством радиоактивного излучения - его воздействием на ткани живого организма (он получил ожог кожи от пробирки с радием, которую носил некоторое время в кармане). Возникла необходимость в количественной оценке степени радиационной опасности.

Под ионизирующим излучением понимают любое излучение, взаимодействие которого со средой приводит к образованию электрических зарядов разных знаков. Процессы взаимодействия излучений с веществом рассмотрены в лекции .

Единицы измерения количества излучения

Величину, используемую для оценки степени воздействия ионизирующего излучения на любые вещества, живые организмы и их ткани, называют дозой излучения . Первоначально считалось достаточным для оценки воздействия знать количество излучения, падающего на облучаемый объект. Это, так называемая, экспозиционная доза . Единицу экспозиционной дозы назвали Рентген (Р) . Рентген - это экспозиционная доза рентгеновского и гамма-излучения, создающая в 1куб.см воздуха при температуре 0°С и давлении 760 мм рт.ст. суммарный заряд ионов одного знака в одну электростатическую единицу количества электричества (система единиц CGSE). Экспозиционной дозе 1 Р соответствует 2.08·10 9 пар ионов (2.08·10 9 = 1/(4.8·10 -10)).

Позднее стало ясно, что радиационный эффект определяется энергией, поглощенной в тканях, облучаемом образце. Основной дозиметрической величиной является поглощенная доза D - количество энергии, поглощенной единицей массы вещества. В системе СИ измеряется поглощенная доза D в Грэях (Гр, Gy): 1 Гр = 1 Дж/кг. Часто пользуются и внесистемной единицей рад (1 рад = 10 -2 Гр).

Но по величине поглощенной дозы еще нельзя предсказать последствия облучения. При одинаковой поглощенной дозе α - излучение гораздо опаснее β - или γ - излучений. Тяжелые заряженные частицы чрезвычайно сильно ионизируют среду вдоль своего следа, производя серьезные радиационные нарушения. Кроме того, вследствие большой массы α-частицы, например, с большей вероятностью сдвигают атомы кристалла в междоузлия, изменяя тем самым свойства кристалла. Если принять во внимание этот факт, то дозу следует умножить на коэффициент, отражающий способность излучения данного вида повреждать ткани организма. Этот коэффициент называют коэффициентом качества излучения . Чем коэффициент больше, тем опаснее данное излучение. Он показывает, во сколько раз больше радиационная опасность воздействия на живой организм данного излучения по сравнению с γ-излучением при одинаковых поглощенных дозах. Скорее это "коэффициент качества вреда". Пересчитанную таким образом дозу называют эквивалентной дозой H ; ее измеряют в Зивертах (Зв). Распространена и внесистемная единица эквивалентной дозы - биологический эквивалент рентгена (бэр). 1 бэр = 0.01 Зв. Значения коэффициентов качества для ряда излучений приведены в таблице.

Мощность дозы - оценка воздействия радиации за единицу времени. Мощность поглощенной дозы измеряется в Гр/час, мощность эквивалентной в Зв/час. Учитывая, что 1 Зиверт это значительная доза радиации, для удобства применяют кратную ей величину микроЗиверт и, соответственно, мощность в мкЗв/час. В России, с момента аварии в Чернобыле, большее распространение получила внесистемная единица измерения мкР/час, отражающая экспозиционная дозу, которая характеризует меру ионизации вещества и поглощенную им дозу.

Естественные и искусственные источники излучений

Как уже говорилось, человечество всегда жило вместе с радиацией. Естественный фон создают космическое излучение, излучение от радиоактивных веществ, находящихся в земной коре. Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать тело снаружи; в этом случае говорят о внешнем облучении. Или же они могут оказаться в воздухе, которым дышим, в пище или воде и попасть внутрь организма. Такое облучение называю внутренним. Например, в теле человека есть калий, 0.0119% его составляет радиоактивный изотоп 40 K . Так что мы сами себя облучаем.

Все жители Земли подвергаются облучению, но в некоторых местах планеты оно в разы больше среднего. Такие места есть в Бразилии, Индии из-за обилия радиоактивных пород.

Космическое излучение . Это в основном излучение от Солнца (солнечная радиация), которое состоит на 99% из протонов (протонное излучение) и на 1 % из ядер атомов гелия (альфа излучение). Но благодаря магнитному полю Земли и атмосфере до поверхности Земли вместо космического излучения, состоящего из крайне опасных протонного и альфа излучений, доходят потоки менее опасных и обладающими на порядки меньшими энергиями - это потоки электронов, фотонов и мюонов. В итоге имеем эквивалентную дозу радиации получаемой человеком от космического излучения в количестве 0.4 мЗв/год или 0.046 мкЗв/час.

Излучение от радиоактивных природных изотопов .

  • Калий 40 K (β- и γ- излучение). Усваивается вместе с продуктами питания и питьевой водой. Содержится в нашем организме. Годовая доза - примерно 0.17 мЗв/год .
  • Углерод 11 C . Усваивается вместе с продуктами питания. Содержится в нашем организме. Годовая доза около 0.012 мЗв/год .
  • Радон 222 Rn и 220 Rn (α излучение) и их продукты радиоактивного распада. Содержатся в газах, поднимающихся из недр земли. Может содержаться в водопроводной воде, если она берется из источников, расположенных глубоко под землей (артезианские источники). Бо́льшую часть дозы облучения от радона человек получает, находясь в закрытом непроветриваемом помещении. Годовая доза 1.8 мЗв/год .
  • Использование ископаемых видов топлива. Уголь содержит незначительное количество природных радионуклидов, которые после его сжигания концентрируется в зольной пыли и поступает в окружающую среду с выбросами, несмотря на совершенствование систем отчистки.
  • Использование фосфатов. Добыча фосфатов, которые используются главным образом для производства удобрений, ведется во многих местах. Большинство разрабатываемых в настоящее время месторождений содержит уран. В процессе добычи и переработки выделяется радон, да и сами удобрения содержат радионуклиды, проникающие в почву и далее в биологические цепочки.

Радиация от источников, созданных человеком . К основным техногенным радиоактивным источникам относят следствие испытаний ядерного оружия, промышленные отходы, атомные электростанции (АЭС), медицинское оборудование, предметы старины, вывезенные из "запретных" зон после аварии Чернобыльской АЭС... В настоящее время основной вклад в дозу от источников, созданных человеком, вносит внешнее радиоактивное облучение при диагностике и лечении. В развитых странах на каждую тысячу населения приходятся от 300 до 900 таких обследований в год, не считая массовой флюорографии и рентгенологических обследований зубов. Средняя эффективная эквивалентная доза, получаемая от всех источников облучения в медицине, в промышленно развитых странах составляет около 1 мЗв/год на каждого жителя, т.е. примерно половину средней дозы от естественных источников.

Среднегодовые дозы, получаемые от естественного радиационного
фона и различных искусственных источников излучения.

Источник излучения. Доза, мЗв/год
Природный радиационный фон 0.20
Стройматериалы 140
Атомная энергетика 0.002
Медицинские исследования 0.140
Ядерные испытания 0.0025
Полеты в самолетах 0.005
Бытовые предметы 0.04
Телевизоры и мониторы ЭВМ 0.001
Общая доза 0.5

Эти же данные в виде диаграммы. Заметим, атомные электростанции дают незначительный вклад в суммарную дозу облучения человечества.

Безопасные дозы радиации

Безопасными эти дозы являются в том смысле, что в настоящее время медики не могут обнаружить последствий облучения, ни немедленных, ни отдаленных. Значения с развитием медицины понижаются.

Заряженные частицы, которые образуются в результате облучения, передают энергию атомным электронам. Атом возбуждается или ионизуется. Например, C → C * или C → C + + e - . Происходит это чрезвычайно быстро, за время меньшее 10 -12 с. Но живая ткань состоит не из отдельных атомов, а из молекул различной величины. Возьмем в качестве примера молекулы воды (70-90% живой материи). Ионизация H 2 O → H 2 O + + e - . Электрон скорей всего будет захвачен молекулой воды с образованием отрицательного иона e - + H 2 O → H 2 O - . Ионизированные молекулы H 2 O + и H 2 O - неустойчивы и диссоциируют

Точкой над символом элемента отмечены свободные радикалы - нейтральные атом H или молекула OH , имеющие неспаренный электрон (в стабильных атомах и молекулах электроны объединены в пару с противоположно направленными спинами). Свободные радикалы активны и вступают далее в реакции. Например, могут вырвать атом водорода из органической молекулы

Получается - энергия первичной частицы передана воде, а повреждена органическая молекула. Конечно, она может быть повреждена и непосредственно, но это маловероятно. (Если бы нам угрожало только прямое повреждение жизненно важных молекул, допустимая радиационная нагрузка была бы в десятки раз больше).

Какие ткани повреждаются в наибольшей степени? Установлено, что наибольшей чувствительностью к излучению обладают ткани, клетки которых активно делятся: костный мозг, эпителий кишечника... Главное в радиационном эффекте не повреждение клетки, а потеря ее способности к делению.

Поэтому влияние облучения носит неравномерный характер, облучение одной и той же дозой дает разный эффект для разных тканей. Ниже в таблице приведены весовые коэффициенты для разных органов и тканей.

Значения тканевых весовых множителей w t для различных органов и тканей.

Ткань или орган w t Ткань или орган w t
Половые железы 0.20 Печень 0.05
Красный костный мозг 0.12 Пищевод 0.05
Толстый кишечник 0.12 Щитовидная железа 0.05
Легкие 0.12 Кожа 0.01
Желудок 0.12 Поверхность костей 0.01
Мочевой пузырь 0.05 Остальные органы 0.05
Молочные железы 0.05

Сумма коэффициентов равна единице.

И, наконец, приведем последствия облучения человека большими дозами.

Клинические формы, тяжесть и исходы болезни при внешнем относительно равномерном облучении человека

Доза облучения, Гр Клиническая форма Тяжесть поражения
0.25 В организме не выявляют клинических проявлений облучения
0.5 Регистрируют незначительные изменения цитологического состава крови и другие, скоро проходящие нарушения
0.5 - 0.75 Лучевая реакция на облучение Незначительное снижение числа лимфоцитов, лейкоцитов, тромбоцитов. Могут регистрировать незначительные нарушения иммунитета и др.
1 - 2 костномозговая форма острой лучевой болезни (ОЛБ) ОЛБ легкой степени (I)
2 - 4 костномозговая форма ОЛБ ОЛБ средней степени (II)
4 - 6 костномозговая форма ОЛБ ОЛБ тяжелой степени (III)
6 - 10 костномозговая форма ОЛБ ОЛБ крайне тяжелой степени(IV)
10 - 20 кишечная форма ОЛБ Летальный исход на 8–16 сутки
20 - 60 токсемическая форма ОЛБ Летальный исход на 4–7 сутки
> 60 церебральная форма ОЛБ Летальный исход на 1–3 сутки

Подведем итог: Безопасной дозой облучения для населения считается 5 мЗв/год (0.57 мкЗв/час). Для сотрудников, работающих на установках с излучением и находящихся под постоянным медицинским контролем, в 10 раз больше.

В своей работе мы использовали материалы докладов научного комитета ООН по действию атомной радиации (НКДАР).

Компьютерная модель познакомит Вас с естественными и искусственными источниками излучений. В зависимости от условий проживания и рода деятельности Вы сможете оценить свою индивидуальную дозу и решить, опасно ли это.

раздел прикладной ядерной физики, в котором рассматриваются свойства ионизирующих излучений, физические величины, характеризующие поле излучения и взаимодействие излучения с веществом (дозиметрические величины). В более узком смысле слова Д. и. и. - совокупность методов измерения этих величин. Важнейший признак дозиметрических величин - их связь с радиационно-индуцированными эффектами, возникающими при облучении объектов живой и неживой природы. Под радиационно-индуцированными эффектами в общем смысле понимают любые изменения в облучаемом объекте, вызванные воздействием ионизирующих излучений (Ионизирующие излучения). Основной дозиметрической величиной является Доза ионизирующего излучения и ее модификации. Задача Д. и. и. - описание дозного поля, сформированного в живом организме в реальных условиях облучения.
Необходимость разработки Д. и. и. возникла вскоре после открытия Рентгеном (W.К. Röntgen) в 1895 г. излучения, названного его именем (см. Рентгена лучи (Рентгеновское излучение)). Интенсивное накопление данных по биологическому действию рентгеновского излучения, с одной стороны, открывало реальную перспективу его применения в медицине, а с другой - указывало на опасность неконтролируемого облучения живого организма. В результате встал вопрос о дозиметрическом обеспечении практического применения источников ионизирующих излучений. В начале 20 в. основными источниками излучения были радий и рентгеновские аппараты, и Д. и. и. сводилась фактически к дозиметрии фотонного ионизирующего излучения (рентгеновского и гамма-излучения). Затем по мере развития технических средств ядерной физики, создания и усовершенствования ускорителей заряженных частиц и особенно после пуска в 1942 г. первого ядерного реактора число источников и связанных с ними видов ионизирующих излучений существенно расширились. В соответствии с этим появились методы дозиметрии потоков заряженных частиц, нейтронов, высокоэнергетического тормозного излучения и др. Стал расти и список дозиметрических величин, соответствующих задачам многообразного практического применения ионизирующих излучений различной природы.
Физической основой Д. и. и. является преобразование энергии излучения в процессе его взаимодействия с атомами или их ядрами, электронами и молекулами облучаемой среды, в результате которого часть этой энергии поглощается веществом. Поглощенная энергия является первопричиной процессов, приводящих к наблюдаемым радиационно-индуцированным эффектам, и потому дозиметрические величины оказываются связанными с поглощенной энергией излучения.
Многообразие условий облучения и многофакторный характер его последствий не позволяют обходиться единственной дозиметрической величиной, приспосабливая ее к изменению этих условий и факторов. Необходим целый набор дозиметрических величин, из которых в зависимости от условий облучения и поставленной задачи выбирают наиболее адекватную меру радиационно-индуцированного эффекта. Примером такой величины является введенный Международной комиссией по радиологическим единицам (МКРЕ) для целей радиационной безопасности показатель эквивалентной дозы (см. Доза ионизирующего излучения) в точке радиационного поля - максимальная эквивалентная доза внутри тканеэквивалентного шара диаметром 30 см при совмещении центра этого шара с данной точкой. Практическое применение этого показателя встречает определенные трудности, ибо проблему адекватности дозиметрии пока нельзя считать полностью решенной.
При Д. и. и. используют как инструментальные, так и расчетные методы. Все дозиметрические приборы устроены по принципу регистрации радиационно-индуцированных эффектов в некотором модельном объекте - детекторе ионизирующего излучения. В ранний период становления Д. и. и, использовались фотографическое действие ионизирующих излучений, химические превращения и выделение тепла. По мере развития методов регистрации элементарных частиц развивались и методы Д. и. и. В современных условиях используется широкий спектр радиационно-индуцированных эффектов. К уже упомянутым можно добавить ионизационные эффекты в газах и конденсированных средах, изменение электрических свойств полупроводников, деструктивные повреждения твердых тел, люминесценцию, сцинтилляцию и др.
Особое место занимает биологическая дозиметрия использующая в качестве меры дозиметрической величины количественные радиобиологические эффекты, например хромосомные аберрации, изменение морфологического состава крови и другие показатели, однозначно связанные с Д. и. и. (см. Лучевая болезнь, Радиочувствительность).
Методы Д. и. и. можно классифицировать по разным признакам. Так, в зависимости от вида регистрируемого эффекта различают ионизационный, фотографический, химический, люминесцентный, калориметрический, сцинтилляционный методы, метод следов повреждения и др. При этом имеет место однозначная количественная связь между изменением физических или химических свойств детектора излучения и поглощенной энергией. В клинической дозиметрии распространены ионизационные методы, в которых детектором служат ионизационная камера, твердотельные люминесцентные кристаллы, полупроводники. Последние привлекают малыми размерами детектора.
В СССР выпускают стационарные, носимые и индивидуальные дозиметрические приборы. Стационарные дозиметры применяют в клинической практике, а носимые наиболее часто используют для оценки радиационной обстановки в целях радиационной защиты. Они имеют автономное питание и потому могут использоваться в любой обстановке, в т.ч. в полевых условиях. Индивидуальные дозиметры предназначены для оценки дозы, получаемой лицами, работающими в контакте с ионизирующим излучением. Они могут быть прямопоказывающими (рис. а, б) или состоять из носимых персоналом ионизационных или термолюминесцентных детекторов (в), показания которых, пропорциональные дозе излучения, определяются на специальном считывающем устройстве.
Клиническая дозиметрия - раздел Д. и. и., занимающийся измерениями и расчетами величин, характеризующих физические и биофизические эффекты облучения больных, получающих лучевую терапию (Лучевая терапия). Основная задача клинической дозиметрии состоит в количественном описании пространственного и временного распределения поглощенной энергии излучения в теле облучаемого больного, а также в поиске, обосновании и выборе индивидуально оптимизируемых условий его облучения.
Основными понятиями и величинами клинической дозиметрии являются поглощенная доза (см. Доза ионизирующих излучений (Доза ионизирующего излучения)), дозное поле, дозиметрический фантом, мишень. Дозное поле - это пространственное распределение поглощенной дозы (или ее мощности) в облучаемой части тела больного, тканеэквивалентной среде или дозиметрическом фантоме, моделирующем тело больного по физическим эффектам взаимодействия излучения с веществом, форме и размерам органов и тканей и их анатомическим взаимоотношениям. Информацию о дозном поле представляют в табличном, матричном виде, а также в виде кривых, соединяющих точки одинаковых значений (абсолютных или относительных) поглощенной дозы. Такие кривые называют изодозами, а их семейства - картами изодоз. За условную единицу (или 100%) можно принять поглощенную дозу в любой точке дозного поля, в частности максимальную поглощенную дозу, которая должна соответствовать подлежащей облучению мишени (т.е. области, охватывающей клинически выявленную опухоль и предполагаемую зону ее распространения).
Формирование дозного поля зависит от вида и источника излучения, от метода облучения (внешнего, внутреннего, статического, подвижного и др.), телосложения больного, а также от типа радиационного терапевтического аппарата. Поэтому в состав технической документации аппарата входят атлас дозных полей и рекомендации по его практическому использованию. При необходимости (для новых вариантов и сложных планов облучения) в лечебных учреждениях выполняют фантомные измерения дозных полей, пользуясь клиническими дозиметрами с малогабаритными ионизационными камерами или другими (полупроводниковыми, термолюминесцентными) детекторами, анализаторами дозного поля или изодозографами. Термолюминесцентные детекторы используют также для контроля поглощенных доз у больных.
Лучевой терапевт совместно с инженером-физиком ведет дозиметрическое планирование - выбирает метод облучения, оптимизирует условия облучения больного путем расчета конкурирующих вариантов дозных полей, определяет технологию облучения на конкретном аппарате, а также осуществляет контроль выполнения принятого плана и его динамическую корректировку в процессе лучевого лечения. В связи с развитием методов и средств вычислительной техники, появлением быстродействующих ЭВМ с большим объемом памяти и средств автоматизированного ввода в ЭВМ исходной графической и текстовой информации о больном происходит постепенный переход от ручного к компьютерному планированию облучения. При этом открываются возможности решения обратной задачи клинической дозиметрии - определения условий облучения по задаваемому врачом дозному полю.
В системе МЗ СССР имеется радиационная метрологическая служба, которая ведет проверку клинических дозиметров и дозиметрическую аттестацию радиационных аппаратов. В 1988 г. в СССР начат переход к метрологическому обеспечению лучевой терапии на основе непосредственных измерений поглощенной дозы в воде, прослеживаемых до государственного первичного эталона единицы ее мощности. Все это способствует повышению точности планирования и осуществления облучения.
Согласно современным международным требованиям, для повышения эффективности лучевой терапии в клинической дозиметрии нужно стремиться к дозированию облучения больного с погрешностью не более 5%, по поглощенной дозе в мишени, а измерения поглощенных доз вести с погрешностью не более 3%.
Библиогр.: Иванов В.И. Курс дозиметрии, М., 1988; Клеппер Л.Я. Формирование дозовых полей дистанциойными источниками излучения, М., 1986, библиогр.; Кронгауз А.Н., Ляпидевский В.К. и Фролова А.В. Физические основы клинической дозиметрии, М., 1969; Ратнер Т.Г. и Фадеева М.А. Техническое и дозиметрическое обеспечение дистанционной гамма-терапии, М., 1982, библиогр.
Индивидуальные дозиметры ионизирующих излучений: а и б - прямопоказывающие портативные дозиметры; в - индивидуальный термолюминесцентный детектор.


Смотреть значение Дозиметри́я Ионизи́рующих Излуче́ний в других словарях

Дозиметрия Ж. — 1. Совокупность методов определения дозы ионизирующих излучений на организм человека, животного и т.п.
Толковый словарь Ефремовой

Дозиметрия — , ДОЗИМЕТРИ́Я, -и; ж. [от греч. dosis - доза и metreō - измеряю]
1. Совокупность методов определения дозы радиоактивного излучения.
2. Область прикладной физики, в которой изучаются........
Толковый словарь Кузнецова

Дозиметрия — (греч. dosis доза + metreo измерять) область прикладной физики, изучающая физические величины, характеризующие действие излучений (гл. обр. ионизирующих) на объекты живой и........
Большой медицинский словарь

— биохимические, физиологические,генетические и другие изменения, возникающие в живых клетках и организмахв результате действия ионизирующих излучений и ультрафиолетовых........

Генетическое Действие Излучений — (радиационный мутагенез) - возникновениепод влиянием ионизирующих излучений и ультрафиолетовых лучейнаследственных изменений (мутаций). Под действием излучений возникаюткачественно........
Большой энциклопедический словарь

Дозиметрия — (от доза и...метрия) - область прикладной ядерной физики, вкоторой изучают физические величины, характеризующие действие ионизирующихизлучений на различные объекты (см. Доза излучения).
Большой энциклопедический словарь

Биологическое Действие Излучений — постоянное воздействие на биосферу Земли элекгромагнитных и корпускулярных излучений внеземного и земного происхождения, приводящее к биохимич., физиол., генетич.........
Биологический энциклопедический словарь

Дозиметрия — (dosimetry) - определение допустимых в данных условиях доз облучения (обычно определение точного количества дозы облучения, которое может получить данный больной в процессе........
Психологическая энциклопедия

Дозиметрия (dosimetry) — определение допустимых в данных условиях доз облучения (обычно определение точного количества дозы облучения, которое может получить данный больной в процессе лечения........
Медицинский словарь

ИИ не обладают запахом, вкусом или какими-либо другими свойствами, позволяющими человеку регистрировать их. Для измерения количественных и качественных характеристик ИИ используются различные методы, основанные на регистрации эффектов взаимодействия излучения с веществом.

Дозиметры - это приборы, предназначенные для измерения дозы или мощности дозы ИИ. В основе этих приборов лежат регистрация и количественная оценка ионизационного, сцинтилляционного, фотографического, химического и других эффектов, возникающих при взаимодействии ИИ с веществом.

Основные группы дозиметров:

Œ Клинические - для измерения ИИ в рабочем пучке. Используют при подготовке к лучевой терапии и в процессе облучения.

 Дозиметры контроля защиты - для измерения мощности дозы рассеянного излучения на рабочих местах (в системе радиационной безопасности). Эти дозиметры должны быть прямопоказывающими.

Ž Индивидуальные - для контроля облучения лиц, работающих в сфере действия ИИ.

Методы дозиметрии:

ü Биологические - основаны на оценке реакций, которые возникают в тканях при облучении их определенной дозой ИИ (эритемная доза, эпиляционная доза, летальная доза). Являются ориентировочными и применяются в основном в экспериментальной радиобиологии.

ü Химические - заключаются в регистрации необратимых химических реакций, происходящих в некоторых веществах под влиянием облучений (радиохимический метод, фотографический метод).

Радиохимический метод - основан на реакции окисления двухвалентного железа в трехвалентное под действием ИИ
(Fe 2+ Fe 3+), что приводит к изменению окраски (прозрачности). Используются ферросульфатные дозиметры. Так как диапазон этих дозиметров очень велик (от 20 до 400 Гр), они используются только для аварийных ситуаций.

Фотографический метод - под действием ИИ происходит почернение рентгеновской пленки, степень которого пропорциональна поглощенной энергии лучей. По плотности почернения можно судить о дозе облучения. Недостатком этого метода является зависимость показаний дозиметра от качественного состава излучения. Точность определения дозы невысока. С помощью фотопленочных дозиметров удобно определять соответствие светового и радиационного поля на аппаратах для лучевой терапии.

ü Физические - основаны на способности ИИ вызывать ионизацию вещества и превращать электрически нейтральный газ в электропроводящую среду (ионизационная камера, газоразрядный счетчик, сцинтилляционный дозиметр, термолюминесцентный дозиметр, полупроводниковые детекторы).

Сцинтилляционные дозиметры . Используются кристаллы йодистого натрия, активированные таллием. При попадании на них ИИ возникают световые вспышки, которые преобразуются в электрические импульсы, усиливаются и регистрируются счетными устройствами. Сцинтилляционные дозиметры не применяются в клинической дозиметрии из-за своего большого объема и высокой чувствительности, что позволяет рекомендовать их использование в дозиметрии защиты.

Термолюминесцентные дозиметры (ТЛД) . Некоторые твердые кристаллические вещества под действием ИИ способны люминесцировать. По интенсивности свечения определяется доза. ТЛД невелики в объеме, являются непрямопоказывающими (доза накапливается в течение какого-то времени). Широко используются в клинической дозиметрии (измерение дозы на больном, в полости тела) и в качестве индивидуальных дозиметров.

Ионизационная камера - это конденсатор. Состоит из двух электродов, пространство между которыми заполнено воздухом. Под действием ИИ воздух ионизируется, возникает электрический ток. По величине силы тока судим о дозе. Дозиметры, основанные на ионизационном методе, в настоящее время наиболее распространены. Широко применяются в клинической дозиметрии, в дозиметрии защиты и индивидуальной дозиметрии.

Газоразрядный счетчик. Также используется ионизационный эффект излучения. Но к электродам газоразрядного счетчика подводят значительно большее напряжение. Поэтому электроны, образующиеся в счетчике при облучении, приобретают большую энергию и сами вызывают массовую ионизацию атомов и молекул газа. Это позволяет регистрировать с помощью газоразрядных счетчиков очень малые дозы ИИ.

Полупроводниковые (кристаллические) дозиметры. Меняют проводимость в зависимости от мощности дозы. Широко используются наряду с ионизационными дозиметрами.